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Abstract: Many construction projects involve a plethora of safety-related problems that can cause loss of productivity, diminished 

revenue, time overruns, and legal challenges. Incorporating data collection and analytics methods can help overcome the root 

causes of many such problems. However, in a dynamic construction workplace collecting data from a large number of resources is 

not a trivial task and can be costly, while many contractors lack the motivation to incorporate technology in their activities. In this 

research, an Android-based mobile application, Preemptive Construction Site Safety (PCS2) is developed and tested for real-time 

location tracking, trajectory prediction, and prevention of potential collisions between workers and site hazards. PCS2 uses 

ubiquitous mobile technology (smartphones) for positional data collection, and a robust trajectory prediction technique that 

couples hidden Markov model (HMM) with risk-taking behavior modeling. The effectiveness of PCS2 is evaluated in field 

experiments where impending collisions are predicted and safety alerts are generated with enough lead time for the user. With 

further improvement in interface design and underlying mathematical models, PCS2 will have practical benefits in large scale 

multi-agent construction worksites by significantly reducing the likelihood of proximity-related accidents between workers and 

equipment. 

Keywords: Construction safety; trajectory prediction; real-time tracking; GPS; Markov model; risk attitude; mobile application. 

I.  INTRODUCTION 

Unlike manufacturing facilities or assembly lines 

almost no construction project occurs in a stationary work 

setting, since large number of resources constantly move 

and frequently interact with one another in an 

unstructured and transient manner. As a result, addressing 

safety issues in construction is rarely trivial and involves 

more challenging problems than other industries. Despite 

extensive research and the practice of strict enforcement 

of regulatory systems and standards related to 

occupational safety and health, construction still remains 

one of the most hazardous occupations worldwide. In this 

paper, a framework for real-time preemptive site safety is 

laid out that can enhance jobsite safety conditions through 

proactively using the vast amount of site data captured 

and processed continuously by ubiquitous data collection 

devices. Collected data, if properly used, can provide 

valuable insights into spatiotemporal interactions between 

construction resources, which can in turn significantly 

enhance our understanding of and ability to predict similar 

future events, and ultimately alert individuals to avoid 

hazardous incidents. The use of such modern pervasive 

data sensing and mining methods can therefore ensure a 

universal and timely deployment of effective safety 

practices on the jobsite.  

Previous research has cited limited work space, and 

frequent interactions between workers, equipment, and 

tools as the leading factors in many injuries and casualties 

in the workplace [1]. Specifically, the diverse and 

complex nature of most construction tasks often brings 

workers and equipment to close proximity of one another 

which can increase the likelihood of life-threatening 

contact collisions. Arguably, the most hazardous 

encounters occur when two or more construction 

resources move too close to each other while overlooking 

potential safety risks. A real-time proactive safety 

warning approach is thus necessary to track the location of 

construction resources and generate safety alerts before 

they get too close to each other. To address this issue, a 

scalable safety framework is presented in this study, that 

fuses spatiotemporal data of workers and site hazards with 

quantifiable measures of an individual’s behavior to 

generate proximity-based preemptive safety alerts in real 

time. A mobile application, Preemptive Construction Site 

Safety (PCS2), is developed and tested to validate the 

designed methodology. This paper also presents a high-

level review of related literature in construction safety, 

existing practices, resource tracking, trajectory prediction, 

and risk behavior. 

 

II.  LITERATURE REVIEW 

A. Injury Statistics in the Construction Industry 

Inherent to the construction industry are high accident 

rates and hazardous activities that have resulted the 

industry to rank as one of the most dangerous industry 

worldwide [2]. In the U.S. alone, more than 17% of all 

work-related deaths are related to construction [3]. 

According to the Bureau of Labor Statistics (BLS), 

approximately 925 fatal injuries happened in 2015 in the 
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construction industry, and approximately $15 billion of 

revenue is lost each year due to construction injuries and 

fatalities [4]. BLS also reported that there were 

approximately 200 thousand nonfatal workplace injuries 

and illnesses in the construction sector in 2015, an 

equivalent of 3.4 cases per 100 full-time workers. Since 

its establishment in 1971, the Occupational Safety and 

Health Administration (OSHA) has aimed at creating safe 

working environments by enforcing safety regulations [5]. 

While these regulations have resulted in an overall 

positive trend in workplace safety the number of injuries 

and accidents is still high. OSHA identifies fall, 

electrocution, struck by object, and caught in between as 

four major causes of construction injuries, named as “fatal 

four”. As shown in Figure I, among these four causes, fall, 

struck by object, and caught in between directly or 

indirectly relate to proximity of construction resources, 

and contribute to almost 51% of all construction-related 

fatalities.  

 

 
 

FIGURE I 

FOUR PRIMARY CAUSES OF CONSTRUCTION WORKER FATALITIES 

 

In their research, Hinze and Teizer [6] categorized 

injuries and fatalities caused by lack of visibility and 

showed that out of 659 equipment- and visibility-related 

fatalities, 521 cases were due to struck by moving 

equipment. Other factors included being hit by equipment 

buckets, material being dropped or lowered by equipment, 

electrocution when equipment contacted power lines, and 

rollovers when equipment were operated on a steep slope. 

Another issue explored in the same study was the 

direction of move of a piece of equipment at the time an 

incident occurred. Figure II portrays that out of 594 

equipment-related incidents, 72.6% of cases occurred 

when the equipment was travelling in reverse direction 

while only 18.5% of cases resulted from equipment 

traveling forward. This study of Hinze and Teizer [6] 

demonstrated a strong correlation between workplace 

accidents and proximity to construction resources. 

There is also a significant cost associated with 

construction injuries and fatalities. In the U.S., the total 

cost of fatal and non-fatal injuries in the construction 

industry were estimated to be $11.5 billion in 2002 which 

was 15% of all injury and fatality costs in the private 

sector [7]. Moreover, it was estimated that in 2002, each 

fatal or non-fatal construction injury cost an average of 

$27,000, compared to $15,000 in other industries [7].  

Another study showed that between 2011 and 2013, the 

annual economic cost of construction-related fatalities 

was approximately $270 million in Illinois, $150 million 

in Indiana, and $125 million in Iowa [8,9]. 

 

 
 

FIGURE II 

EQUIPMENT MOVEMENT DIRECTION WHEN ACCIDENT OCCURS (N=594) 

 

B. Existing Safety Practices 

Existing construction safety management practices 

are traditionally carried out in a fragmented manner [10]. 

To this end, it is worth noting that quite often the main 

focus of construction management which is productivity 

improvement (i.e. lower product cost and shorter 

completion time) is in clear contrast with workplace 

safety requirements [10]. Several researchers have 

proposed different approaches to integrate safety in 

construction design, planning, and control [11]. Ideally, 

safety measures must be taken into consideration as early 

as the design phase where designers can play an important 

role by implementing safer designs and directing the 

choice of construction means and methods to avoid or 

reduce hazardous situations on the jobsite [10]. However, 

due to the unpredictable and dynamic nature of 

construction field activities, it is challenging for designers 

to foresee each and every hazardous situation before the 

construction process begins. Following the design phase, 

the next step in a project lifecycle where safety 

precautions must be practiced is construction. This is 

normally done by checking and enforcing common 

industry safety regulations such as those of OSHA [12]. 

Previous research has indicated that although complying 

with OSHA regulations contributes to an overall safe 

jobsite, such rules and regulations may not be enough to 

avoid all incidents involving physical contacts between 

objects (a.k.a. contact collisions) [13]. The main 

underlying reason behind this is that OSHA mainly 

enforces the use of passive safety devices (e.g. hard hats, 

safety shoes, goggles, face shields, reflective clothing, 

hearing protection, wet weather gear, and filter masks) 

also known as Personal Protective Equipment (PPE), 

which are not capable of providing proper warning before 

a collision happens. In addition to these implementation 

issues, the lack of education and experience in safety 
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management has been identified as a major cause in many 

incidents [14]. Typically, knowledge about safety is 

conveyed through textbooks, specialized training, 

apprenticeship programs, and job experience [15]. These 

safety programs deliver information about site risks, 

hazards, and safe behaviors. For example, OSHA offers a 

30-hour voluntary outreach class for personnel with 

supervisory authority over workplace safety and health, 

aiming to educate them about standards, procedures, and 

policies with special emphasis on identification, 

avoidance, abatement, and prevention of workplace safety 

hazards [16]. It has been stated that existing safety 

training programs are often not sufficiently engaging, 

offered within a short period of time, and do not take 

advantage of active workers’ participation [14]. In 

addition, construction accidents can happen due to errors, 

negligence, omissions, and misunderstandings of one or 

two workers, which is difficult to pinpoint in advance 

[17]. 

 

C. Technology in Construction Safety 

During the past several years, and with the invention 

of more robust sensing technologies, researchers have also 

studied the feasibility of real time proactive proximity 

safety warning systems for construction workers. For 

instance, Teizer et al. [13] conducted an experiment using 

a radio frequency (RF) system which gave audio-visual 

alerts to workers and equipment operators when they 

came to close proximity to each other. Ding et al. [18] 

presented a safety management tool based on the Internet 

of Things (IoT) which integrated fiber bragg grating 

(FBG) sensors and radio frequency identification (RFID) 

for labor tracking. Another research based on location-

aware technologies that combined wireless 

communication, global positioning system (GPS), and 

geographic information system (GIS) showed the 

potential of real time safety warning by automatically 

detecting hazards, alerting drivers to avoid collisions, and 

ultimately ensuring reliable navigation of construction 

equipment [19]. 

Not only are information and communication 

technologies such as building information modeling 

(BIM), virtual design and construction (VDC), and GIS 

emerging tools in architecture, engineering and 

construction (AEC), they can also facilitate the integration 

of safety measures in design, planning, and monitoring of 

field activities. For example, Zhang et al. [12] presented a 

rule-based BIM-enabled engine to automatically analyze a 

building model, detect fall-related safety hazards, and 

suggest preventive actions to the user. Hadikusumo and 

Rowlinson [20] created a virtual reality (VR)-based 

design-for-safety process database which took input from 

the building design phase to identify safety hazards. An 

integrated system for construction safety management 

based on 4D CAD models and a rule-based algorithm was 

developed by Benjaoran and Bhokha [10], which 

integrated safety measures at the early stages of design 

and planning to help all parties prepare for safety 

constraints before the actual work begins. Bansal (2011) 

developed a platform using GIS-based navigable 3D 

animation, linking information from the project schedule 

with the safety recommendation database to predict the 

places and activities having higher risk potentials. Video 

camera and time-lapsed photography have been also used 

frequently to measure the overall safety conditions of 

construction sites and identify potential violations by 

workers and contractors [21]. 

 

D. Automated Construction Resource Tracking 

As stated earlier, contact collisions are the major 

cause of construction injuries and fatalities. In order to 

assess and understand the underlying characteristics of 

this kind of incidents, obtaining context-aware 

information including time-stamped positional data of 

construction resources is critical [22]. However, despite 

recent developments in construction measurement and 

sensing technologies, collecting precise and timely 

location data from construction resources still remains a 

rather challenging task [23]. To remedy this problem, past 

studies have investigated methods of automatically 

tracking resources (personnel, equipment, materials) in 

construction and facilities projects. In particular, several 

technologies for indoor and outdoor location tracking and 

remote sensing have been used. For example, researchers 

explored the prospect of automatically measuring labor 

input by tracking their position [24]. Using this approach, 

the time each worker spent on an activity was estimated 

with an accuracy of 10%-20%. Sacks et al. [24] and 

Navon et al. [25] used GPS to track earthmoving 

equipment in regular intervals and convert location data 

into equipment productivity and material consumption. 

Other researchers also used GPS to track construction 

equipment and materials [22, 26, 27, 28, 29]. RFID is 

another location tracking technology used for tracking 

construction resources. In an early attempt, RFID was 

used to track high-value materials on construction jobsites 

[30]. Song et al. [31] used RFID to track the delivery and 

receipt of fabricated pipe spools. Goodrum et al. [32] 

developed a prototype tracking system to monitor hand 

tools in a mobile environment. Indoor GPS, wireless local 

area network (WLAN), inertial navigation system (INS), 

Bluetooth, infrared, and ultrasonic are some of the 

available technologies for indoor tracking, and several 

applications have been developed based on these 

technologies [22, 33, 34, 35,36]. 

As the number of mobile phone users has been 

steadily growing with almost 2 billion smartphone users 

in the market by late 2015 [37], researchers in multiple 

disciplines have also directed their efforts toward utilizing 

a host of mobile-embedded sensors (e.g. GPS, 

accelerometer, gyroscope, digital compass). In an early 

study, an Android-based indoor/outdoor localization 

system was developed, taking advantage of GPS and WiFi 

modules, to locate personnel carrying smartphones [38]. 

Recently, the development of GPS and location-aware 

applications have gone beyond simply navigating through 

a route or obtaining the location of the phone. For 

instance, GPS data collected from cellular phones were 

used to gather large volumes of traffic information, 

process the collected data, and distribute it back to the 
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phone users in real time for traffic analysis and 

monitoring [39]. Also, a smartphone-based navigation 

application was developed to alert visually-impaired 

pedestrians with an audible message at decision points 

prior to their arrival at a work zone [40]. 

The application of smartphone-based location-aware 

technologies in healthcare is also explored in several 

studies. For instance, a generic Android-based framework 

was developed to collect field data by epidemiologists and 

ecologists with the help of a web database and GPS data 

[41]. The potential of location-aware smartphone 

technologies to help the elderly and visually-disabled 

persons has been also described in several studies [42]. 

 

E. Analysis of Workers’ Risk-Taking Behavior 

Within the construction domain, extensive research 

has been carried out to improve the safety environment for 

field workers. The interface of safety and human behavior 

has been the subject of previous studies in other domains. 

For instance, Salminen [43] conducted a survey that 

showed young workers under the age of 25 experience a 

higher injury rate than older workers. Gardner and 

Steinberg [44] conducted an experimental study with 306 

participants in three age groups – adolescents (13-16), 

youth (16-22), and adults (24 and older) to measure risk 

preference and risky decision making, and concluded that 

risk-taking and risky decision-making decrease with age. 

Cooper [45] stated that the risk-taking propensity of an 

individual depends on his or her perception of the 

situation, past experience, and personality. Gender 

differences in risk-taking attitude is also studied in several 

projects. For example, Charness and Gneezy [46] showed 

that women are generally more risk averse in financial 

issues than men. Their study demonstrated that women 

make smaller investments in a risky asset than men do. In 

addition, risk-taking propensity of men has been observed 

to be higher than women in other domains. For example, 

according to the U.S. Department of Transportation, male 

drivers are three times more likely to be involved in fatal 

car accidents. Also, it was reported that female drivers use 

seat belts substantially more often than men [47].  

 

F. Motion Trajectory Prediction 

Trajectory prediction is a critical component of 

almost all spatial collision algorithms [48]. Researchers 

have studied a variety of trajectory prediction techniques 

in several fields such as robotics [49], aerospace 

engineering [48], maritime traffic management [50], 

physics and mechanics [51], and meteorology [52]. Gong 

and McNally [48] presented a methodology based on 

statistical analysis to improve the quality of trajectory 

prediction for decision support applications such as 

conflict detection and arrival metering for air traffic 

management. Perera et al. [50] presented a methodology 

of integrating intelligent features with vessel traffic 

monitoring and information system (VTMIS) to predict 

navigational vessel trajectory using extended Kalman 

filter (EKF) [53]. One of the first attempts to collect 

global system for mobile communication (GSM) data was 

made by Laasonen et al. [54] who proposed a prediction 

model which took a sequence of recent cell transitions to 

find the most probable cell the user will enter next. 

Ashbrook and Starner [55] used Markov model [56] to 

predict a user’s next location from his or her significant 

past locations extracted from GPS data. Mathew et al. 

[57] designed a hybrid method to predict human mobility 

by training a HMM using historical location clusters. 

Vasquez and Fraichard [58] proposed a technique that 

learns the pattern of a moving object and applies a 

pairwise clustering algorithm to clustered trajectories to 

predict that object’s future position. A hybrid prediction 

model, coupling historical trajectory patterns and an 

object’s recent motion was also explored [59] and 

demonstrated accurate results than existing prediction 

models at that time. Monreale et al. [60] proposed a 

trajectory pattern tree to predict the next location of a 

moving object using GPS data with a certain level of 

accuracy. Gambs et al. [61] used the extended mobility 

Markov chain (MMC) theory to predict the next location 

of an individual using his previously visited locations. 

Kim et al. [52] presented a destination prediction 

framework which detects a user’s location via k-nearest 

neighbour (KNN) and decision trees, and predicts his or 

her future destination using HMM. 

 

III. RESEARCH METHODOLOGY  

A. Trajectory Prediction Using HMM 

Machine learning tools, specifically Markov chain 

(MC) and HMM have been previously used in context-

aware applications. In HMM, trajectories are treated as 

discrete stochastic processes (i.e. random walks). In this 

research, a trajectory prediction technique based on HMM 

is designed to predict the future location of construction 

workers on the jobsite. As shown in Figure III, training 

trajectory data are first collected and stored in a trajectory 

database (DB). Next, statistical parameters are extracted 

from the dataset and used to train the HMM. New 

trajectory data is then collected from a target user (i.e. 

construction worker) and used as the input of the trained 

HMM to predict that worker’s immediate future positions 

as he or she walks around the jobsite. Clearly, since HMM 

is a trainable prediction method, with time and as more 

trajectory data come in, the model better adapts itself to 

the real-world movement patterns of each construction 

worker and can provide more accurate predictions. 

In this research, in order to train the HMM, 71 

trajectories were collected. Each collected trajectory was 

divided into smaller (12-second long) normalized 

trajectory sections as shown in Figure IV and K-mean 

clustering was used to group all such sections into 8 

clusters (a.k.a. latent segments). Statistical parameters 

including mean, variance, and covariance were then 

extracted from these clusters. Considering the limited 

horizon assumption, which states that the probability of a 

future location depends only on the current location [56], 

given a sequence of latent segments S0, S1, S2,.......,Sn the 

probability of occurrence of a future latent segment Sn+1 

depends only on the current latent segment Sn, as stated in 
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Equation (1). These probabilities are termed transition 

probabilities and together create the transition matrix. 

 

P (Sn+1 | Sn, Sn-1, Sn-2,…., S0) = P (Sn+1 | Sn)               Eq. (1) 

 

 
 

FIGURE III 

MAIN STEPS OF THE DEVELOPED HMM-BASED TRAJECTORY 

PREDICTION METHOD 

 

 
 

FIGURE IV 

KEY ELEMENTS OF HMM PREDICTION MODEL 

 

Next, bivariate normal probability density function 

was used to calculate the likelihood of each section to be 

generated from a specific latent segment, and all 

calculated probabilities were stored in a likelihood matrix. 

Since the sequence of sections over a latent segment is 

known from the training data, HMM was trained using all 

71 trajectories to calculate transition probabilities between 

states. Given that initially trajectories have different start 

positions, directions, and velocities, they must be first 

normalized by a translation to the origin (0, 0), followed 

by a rotation so that the initial direction is (1, 0), and 

finally scaling so that the initial velocity is unit velocity. 

This results in a total of 4,662 normalized short trajectory 

sections extracted from the training data. The overall 

training process of the HMM is demonstrated in Figure V 

which involves calculating the transition probabilities 

between latent segments throughout all training 

trajectories. 

 
 

FIGURE V 

INPUT-PROCESS-OUTPUT DIAGRAM OF HMM TRAINING STAGE 

 

Transition probabilities are in fact conditional 

probability distribution functions (PDFs) of a specific 

latent segment to be followed by other latent segments. As 

the sequence of short trajectory sections over the eight 

latent segments is known from the training data, running 

all training trajectories through the HMM provides an 8-

by-8 probability matrix containing transition probability 

distributions of each latent state. This process is 

implemented in MATLAB using hmmestimate(seq, 

states) which returns the maximum likelihood estimate 

of transition probabilities of the HMM for sequence seq 

and known states (latent segments) states. Next, the 

likelihood (ℒ) of normalized sections to be generated from 

a latent state and the PDF of the bivariate normal 

distribution is implemented in MATLAB as mvnpdf(x, 

µ, Σ) which returns the density of the multivariate 

normal distribution with mean µ and covariance Σ. The 

likelihood of each trajectory section to be generated from 

a latent segment is calculated and stored in the likelihood 

matrix.  

Once the HMM is fully trained, the resulting transition 

matrix and the likelihood matrix are applied to future 

trajectory data to perform trajectory prediction. In a 

nutshell, to predict the next section of a new trajectory, 

the model first checks the likelihood matrix and finds the 

latent segment that best resembles the observed trajectory 

section. Next, it determines the most probable future 

latent segment using the transition matrix, and finally 

provides the most likely trajectory section from the 

likelihood matrix. During the prediction stage, at least 12 

data points are required. As shown in Figure VI, the 

observed latest section (ln), which contains 12 data points 

is first normalized. Next, the maximum likelihood of that 

section to be generated from a specific latent segment (Sn) 

is computed from the likelihood matrix. The latent 

segment with maximum likelihood is then used to 

compute the next most probable latent segment (Sn+1) 

from the transition matrix. Finally, the likelihood matrix is 

used to find the trajectory section which has the highest 

likelihood to be generated from that latent segment (Sn+1). 

The trajectory section is then denormalized and used as 

the predicted future trajectory (ln+1). Since the first two 

points of ln+1 are patched to the existing trajectory, the 

trained HMM model can predict up to 10 seconds in 

advance. 



Risk-Incorporated Trajectory Prediction to Prevent Contact Collisions on Construction Sites 

 

15 

 

Vol. 8, No. 1 / Mar 2018    

 
 

FIGURE VI 
INPUT-PROCESS-OUTPUT DIAGRAM OF HMM PREDICTION STAGE 

 
B. Incorporating Risk-Taking Behavior into Trajectory 

Prediction 

As stated earlier, in addition to a robust motion 

trajectory prediction model, this research attempts to 

formalize a method to incorporate the risk attitude of 

workers with the developed HMM. It is imperative that a 

trajectory predicted solely based on mathematical 

principles must be adjusted to also reflect the extent to 

which a worker is inclined to take or avoid risks. In this 

work, the basic principle applied to incorporating risk 

behavior in trajectory prediction is that if a worker 

exhibits a risk-taking behavior, his or her predicted future 

position is moved closer to the hazard zone since the 

worker is more likely to be on a collision course. In order 

to make the analysis more conservative, no calibration is 

made for a risk-averse worker. Two types of risk factors 

are considered, namely the angular risk factor (α), and the 

linear risk factor (m). A worker’s risk factor (k) at any 

given timestamp is then calculated by multiplying angular 

and linear risk factors at that timestamp. In order for this 

approach to yield accurate results, it is important to also 

properly quantify a cumulative risk attitude (a.k.a. the 

aggregate risk factor or µ) of each worker. To this end, a 

self-learning formulation is used to continuously 

calculate, store, and update the aggregate risk factor based 

on the history of a worker’s movements in the vicinity of 

hazards. 

The angular risk factor (α) is calculated based on the 

worker’s actual trajectory. From Equation (2) and 

Equation (3), within a certain vicinity of the hazard, if a 

worker is moving directly toward the hazard center, α is 1 

or 100%, which means he or she is a full risk-taker. In 

contrast, if a worker is moving in the opposite direction 

from the hazard center, α is 0, which implies that in that 

specific instance of time, he or she is a full risk-averse. In 

cases where the direction of workers’ movement is at any 

angle (θ) with the hazard center, α is between 0 and 1. 

                                                                                                     

               𝜃 =  𝑐𝑜𝑠−1 𝑎2+𝑏2−𝑐2

2𝑎𝑏
              Eq. (2)                                                    

               𝛼 = 1 −  
𝜃

180
                          Eq. (3) 

 

A hypothetical trajectory is plotted in Figure VII with 

a stationary hazard zone. The value of α at each position is 

superimposed in form of a circle on the worker’s 

coordinate at that point. When the worker approaches the 

hazard directly, the circle grows, implying that the value 

of α approaches 1 (maximum possible). In this scenario, it 

can be inferred that the worker is exhibiting a risk-taking 

behavior. On the other hand, as the worker is passing by 

the hazard, the circle shrinks indicating that α approaches 

0 (minimum possible). In this case, the worker 

demonstrates a risk-averse attitude. 

 

 
 

FIGURE VII 

VARIATION OF ANGULAR RISK FACTOR (α) NEAR THE HAZARD ZONE 

 

The linear risk factor (m), on the other hand, is based 

on the discrepancy between predicted and actual 

positions. It represents the radial error of the predicted 

position relative to the actual position, considering the 

hazard zone at the center of the circle. In Figure VIII, the 

predicted future position, calculated by the trajectory 

prediction model is shown as point 4ʹ. The linear distance 

(d) between the actual position (point 4) and the hazard 

center H, as well as the linear distance (d1) between the 

predicted position (point 4ʹ) and the hazard center H are 

calculated using the Haversine formula. The linear risk 

factor (m) represents the difference between d and d1 as 

calculated by Equation (4). Knowing m, the instantaneous 

risk factor, k can be calculated by Equation (5). 

 

Linear Risk Factor (m) = d1 – d              Eq. (4) 

 

       Risk Factor (k) = α × m                           Eq. (5) 

 

As previously mentioned, to yield more accurate 

results, it is important to properly quantify the cumulative 

risk attitude (a.k.a. the aggregate risk factor or µ) of each 

worker. 

An individual’s aggregate risk factor is calculated and 

updated based on the history of his or her movements in 

the vicinity of hazards. Initially, µ  is set equal to zero and 

workers are all assumed to be neutral (neither risk-taker 

nor risk-averse). This will be modified over time as 

positional data is collected. In the next iteration, point 4ʹ is 

shifted k units toward H. The adjusted position is labelled 

as 4ʹʹ. Next, given k and d1, the modified linear distance d2 

(between H and 4ʹʹ) is calculated and compared with a 

predefined hazard radius (R1) which is a function of the 

hazard type. If d2 ≤ R1, the worker is too close to the 

hazard and an alert (combination of sound, vibration and 
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pop-up text) is generated. If risk factor m is negative, it is 

changed to zero, to make the analysis more conservative. 

In other words, the proposed method adjusts prediction 

toward the hazard, but not away from the hazard. Since 

the developed HMM method is aimed to improve 

workers’ safety, adjusting the prediction by moving it 

away from the hazard zone may sometimes result in an 

impending collision which is not desirable. Next, µ  is 

updated for the next step using the weighted average of k 

values from previous steps, giving higher weight to more 

recent k values. Specifically, µ  can be determined using 

Equation (6). 

 

𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒 𝑅𝑖𝑠𝑘 𝐹𝑎𝑐𝑡𝑜𝑟 (𝜇) =  
∑ 𝑘𝑖×(𝑖)𝑛−1

𝑖=1

∑ 𝑖𝑛−1
𝑖=1

      Eq. (6) 

 

 
 

FIGURE VIII 

LINEAR RISK FACTOR AND ADJUSTMENT OF PREDICTION 

 

C. Preemptive Construction Site safety (PCS2) Mobile 

Application 

In order to assess the practicality of the designed 

methodology, an Android implementation of the risk-

incorporated HMM prediction model is developed and 

tested. This mobile application, called Preemptive 

Construction Site Safety (PCS2) used two radii as the 

boundaries of safe and unsafe region surrounding a 

hazard. In particular, the immediate area around a site 

hazard is marked by the hazard radius. Once a user enters 

the hazard zone, PCS2 generates a safety alert. In order to 

trigger the application to start computing trajectories, a 

wider area designated as the buffer zone is also defined 

around each site hazard. The values of hazard and buffer 

radii are specific to each type of hazard and other factors 

such as equipment blind spots, equipment working radii, 

and debris falling zones. 

In each timestamp, PCS2 uses the built-in GPS sensor 

of the smartphone carried by the worker to locate the 

worker in the open space. A sensor fusion approach is 

adopted for triangulation using satellite, WiFi, and 

cellular networks to obtain more accurate positional data. 

The process flowchart of PCS2 is illustrated in Figure IX. 

Once launched (node “Start”), PCS2 accesses the GPS of 

the smartphone and continuously collects user’s positional 

data. If the user does not move by a minimum distance 

between two consecutive coordinates, the application 

considers the user stationary (i.e. not moving) and a null 

output is generated in response to the “Walking?” 

decision node. Otherwise, PCS2 stores the user’s 

trajectory (GPS coordinates) in a SQLite database. If the 

user’s current position is inside a buffer zone (i.e. trigger 

event), then PCS2’s background service initiates the 

HMM algorithm, starts calculating corresponding risk 

factors, and predicts the user’s risk-incorporated future 

position. If the predicted coordinate is inside the hazard 

zone, PCS2 generates and displays an alert message with 

vibration so that the user has enough time to assess the 

surroundings and adjust his or her walking trajectory 

accordingly. 

 

 

FIGURE IX 
HIGH-LEVEL FLOWCHART OF PCS2 MOBILE APPLICATION 

 

PCS2 has a user friendly graphical user interface 

(GUI). The GUI contains Layout XML files which are 

rendered as a set of View class objects. Figure X shows 

the mobile application layouts. The “initial layout” of the 

GUI allows the user to manually enter input parameters 

such as the number of hazard zones and input their global 

coordinates, hazard and buffer radii, and the prediction 

horizon. The “operation layout” uses Google Map in the 

background for real time visualization. In this layout, 

hazard and buffer zones are superimposed on Google Map 

and shown as color-coded circles. The designed GUI also 

plots actual, predicted, and adjusted (i.e. risk-

incorporated) positions. Once a collision event occurs 

(adjusted position falls inside the hazard zone), the 

application displays an alert dialogue box and generates 

ringtone and vibration in the “alert layout”. Finally, to 

support post-analysis of data, all collected data and 
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calculated variables can be exported to the internal phone 

memory in .csv format using the “export layout”. 

 

          
                 INITIAL LAYOUT                                          OPERATIONAL LAYOUT 

 

     
                ALERT LAYOUT                                                EXPORT LAYOUT                                                  
 

FIGURE X 
SCREENSHOTS OF THE PCS2 MOBILE APPLICATION LAYOUTS 

 

The PCS2 mobile application consists of four major 

Android activities. The Main Activity initiates the 

application and contains the code which calls different 

methods from other activities. The Map Activity initially 

allows users to input prediction lag, latitude, longitude, 

buffer radius, and hazard radius values. Clicking the 

“Save” button saves these initial values to the application. 

When user clicks on the “Start” button, it implements a 

Location Manager service which accesses the user’s 

location from the cellular network and the 

GPS_Provider, through ACCESS_COARSE_LOCATION 

and ACCESS_FINE_LOCATION, respectively. Combining 

both methods results in a more accurate detection of 

users’ geo-location. Figure XI depicts the sequence of the 

function used in the mobile application to generate an 

alert. After collecting 12 coordinate points, the Map 

Activity implements a normalizeSection method to 

normalize the trajectory sections. If the current location is 

inside the buffer zone, this activity then initiates the 

HMM by first implementing getLikelihoodSection 

which finds out to which latent segment does the current 

trajectory belong. Next, getTransitionSegment picks 

the predicted latent segment with the highest probability 

from the likelihood matrix. Then, it implements 

getLikelihoodSection again to identify the most 

likely trajectory section to be generated from the selected 

latent segment. Ultimately, denormalizeSection is 

implemented to calculate the 10-second real-size 

predicted trajectory segment. Based on the initial user 

input for prediction lag, the Map Activity stores the 

latitude and longitude (e.g. if the user inputs 4 seconds in 

the prediction lag box, Map Activity only stores the 4th 

second predicted latitude and longitude). After the initial 

prediction, this activity implements a riskFactor 

method to calculate the risk factor based on the hazard 

position, and return the adjusted prediction.  

 

 
 

FIGURE XI 

FUNCTIONS USED FOR ALERT USERS FROM THEIR LOCATION DATA 

 

If the adjusted prediction is inside the hazard zone, it 

generates an alert by implementing 

alertDialogueBuilder, which also contains a 

VIBRATOR_PROVIDER to generate a physical device 

vibration. Besides, the Map Activity implements 

addMarker and addPolylines to display the current 

location, predicted location, and adjusted location using 

colored markers and polylines. The Export Activity 

initiates the Export Layout as shown in Figure X. The 

SQLite database is used to store the trained HMM 

matrices (transition matrix, likelihood matrix), and real-

time, predicted, and adjusted user’s positions. All 

variables such as angular risk factor (α), linear risk factor 

(m), and aggregated risk factor (µ) are also stored in the 

database to assist data analysis. The Export Activity 

implements a CSVwriter class to write and store the 

data in a .csv file. 

 

D. Field Validation Experiment 

A field experiment is conducted to evaluate the 

effectiveness of the PCS2 mobile application. In the 

experiment, real time coordinates of a user are collected 

and analyzed, and a prediction based on HMM is made. 
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Further, the prediction is adjusted using the risk factor and 

if there is an impending collision, PCS2 provides a safety 

alert. As shown in Figure XII, the initial inputs are the 

coordinates of the hazard, prediction horizon, and hazard 

and buffer radii. 

 

 
 

FIGURE XII 
INITIAL INPUTS OF PCS2 FOR THE FIELD EXPERIMENT 

 

Figure XIII shows the experiment setup with a user 

and a forklift as a stationary hazard. The hazard zone is 

also marked with red circle in this Figure. For this 

experiment, the prediction horizon (lag) is set at 5 

seconds, and hazard and buffer radii are set to be 10m and 

20m, respectively. The user carries a smartphone which 

runs the PCS2 application in the background. 

Figure XIV illustrates the user’s trajectory as 

captured in the field. In this Figure, buffer and hazard 

zones around the site hazard are clearly marked. When the 

worker is inside the buffer zone, PCS2 starts the trajectory 

prediction and risk factor calculation. If the predicted 

location lies inside the hazard zone, a safety alert is 

generated and displayed. Figure XV illustrates a sample 

impending collision during the field experiment, where 

the user walked too close to the hazard and the mobile 

application correctly predicted an imminent collision 

event, and provided a timely alert to the user. In total, 15 

such alerts are generated by PCS2 during this field 

experiment. For each alert, the exact position is marked on 

the ground where the alerts are given. After the 

experiment, 15 distances each corresponding to an alert 

are measured. Considering the average human walking 

speed (ranging between 0.5 m/s and 1.5 m/s), a 5-second 

advance prediction in theory should result in an alert 

within a distance of 12.5m to 17.5m from the hazard. If a 

generated alert is within 12.5m to 17.5m range, it is 

considered “timely”. Alerts generated when the user was 

closer than 12.5m are considered “late”. 

 
 

FIGURE XIII 
EXPERIMENT SETUP WITH THE FORKLIFT AS A SITE HAZARD 

 

 
 

FIGURE XIV 

COLLECTED USER TRAJECTORY IN THE VICINITY OF THE FORKLIFT 

 

 
 

FIGURE XV 

USER APPROACHING A HAZARD ZONE DURING THE FIELD EXPERIMENT 

 

Table I summarizes the results obtained from the field 

experiment in terms of the timeliness of the generated 

safety alerts. As seen in this Table, for this particular 

experiment, 10 out of the total 15 generated alerts are 

“timely”, 5 are “late”. Nonetheless, in all 15 cases, alerts 

were generated prior to the user entering the hazard zone, 

which implies a 100% success rate. Also, recall, precision, 

and accuracy for the field experiment are presented in 

Table II. As shown in this Table, the total duration of the 

experiment was 448 seconds, and recall, precision, and 
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accuracy values were calculated as 82.5%, 68.8%, and 

88.4%, respectively.  

 
TABLE I 

RESULTS OF PCS2 FIELD TEST 

Alert Distance from Hazard 

(meter) 

Alert Timeliness 

(≥ 5 sec. in advance) 

1 10.14 Late 

2 12.9 Timely 

3 12.6 Timely 

4 13.72 Timely 

5 10.21 Late 

6 12.92 Timely 

7 13.1 Timely 

8 13.32 Timely 

9 8.54 Late 

10 12.98 Timely 

11 11.3 Late 

12 9.15 Late 

13 13.84 Timely 

14 14.47 Timely 

15 12.69 Timely 

 

TABLE II 
RECALL, PRECISION, AND ACCURACY OF THE FIELD TEST 

Experiment 

Duration (sec.) 

Recall Precision Accuracy 

448 82.5% 68.8% 88.4% 

 

IV. LIMITATIONS & FUTURE WORK  

Mobile technology including smartphones has become 

a ubiquitous component of daily life during the last 

several years. Therefore, the primary assumption of this 

study is that the majority of construction workers (as a 

subset of the general population) carry smartphones and 

thus, can conveniently access and launch PCS2 on their 

mobile devices. User friendliness and ease of use were 

two major design parameters when creating PCS2 

interface and application features, and therefore, it is 

expected that future users (construction employers) will 

only need minimum training and supervision to 

successfully implement PCS2 in the field. It is imperative 

that since modern smartphones come equipped with a 

built-in GPS sensor, they can obtain context-aware 

information based on the global position of the device 

user, connectivity to available cellular networks, WiFi 

connection, or a combination of these methods. Each 

device, however, provides a different level of accuracy 

based on its specifications, price, and part manufacturer. 

According to the Institute of Navigation (ION), most of 

existing smartphones in the market can track their position 

within a 5-meter accuracy in open sky [62]. While this 

may be a limiting factor in the short-term implementation 

of PCS2, the authors believe that with the current fast 

pace of technological advancements in a global consumer-

driven competitive market [63], such hardware challenges 

will be resolved in a relatively short span of time.  

Future steps of this study will include enabling risk-

calibrated trajectory prediction in the presence of multiple 

site hazards and several workers in a more complex 

construction environment. To facilitate the widespread 

adaption of the designed methodology, large sets of 

trajectory data can be stored and filtered by attributes such 

as type of jobs, as well as worker’s age, gender, and level 

of experience. Such database of trajectories can 

significantly enhance the adaptability of the HMM to 

different types of projects, tasks, and workers, thus 

creating more reliable results. In doing so, the authors will 

also create more robust methods to identify, quantify, and 

classify potential worksite hazards, so to provide a better 

context for potential proximity-related accidents 

considering not only accident frequency (likelihood) but 

also accident severity [64].  

 

V. SUMMARY & CONCLUSION  

The advancement of information technology has 

resulted in the emergence of new mobile devices equipped 

with a rich set of embedded sensors capable of high level 

computing. Several mobile operating systems (e.g. 

Android, iOS) have been also developed and introduced 

that take advantage of high computational power and 

online application stores allowing developers to access a 

large user population worldwide. Despite these 

technological breakthroughs, the real value of mobile 

wearable sensors (e.g. smartphones) for robust position 

tracking in support of jobsite safety has not been yet fully 

investigated in the construction industry. In this research, 

mobile technology was deployed to design and implement 

a motion trajectory prediction framework for construction 

site safety. In particular, smartphone’s GPS location 

services and mobile operating system were used to 

develop and test a native Android-based mobile 

application called Preemptive Construction Site Safety or 

PCS2 capable of real time location tracking and predicting 

the future location of a user. The key advantage of PCS2 

is that it also incorporates individuals’ risk-taking 

behavior in the vicinity of site hazards into trajectory 

prediction. A field experiment was conducted in which a 

stationary hazard (forklift) with buffer and hazard radii of 

20m and 10m was used, and risk-incorporated trajectory 

predictions were made with a prediction horizon of 5 

seconds. Result of the experiment showed that while 

PCS2 could detect all 15 impending collisions, in 10 

cases, safety alerts were generated with enough lead time 

for the user to change course. Achieving promising 

preliminary results, there are several aspects of the 

developed prototype (e.g. software design, user interface, 

background mathematical formulae) that will be further 

improved as part of the future directions of this research 

so that PCS2 can be widely adopted in large-scale real-

time construction site safety applications. 
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