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Abstract—Maps and navigation applications are essential tools
in the modern era, especially for smartphone users. Navigation
apps not only guide us on the correct path to the destination but
also serve to find convenience and provide connectivity by sharing
locations, travel status, and expert guidance. Map applications
offer real-time updates which rely on crowdsourcing data
from users, historical data, and advanced prediction algorithms.
However, due to the dynamic nature of the urban environment,
navigational apps fail to provide unscheduled road closure
information. This study investigates erroneous situations and found
23 incidences where maps fail to navigate the closure information.
We propose ROADNote, an automated system that accommodates
urban sensors and provides closures update to users. ROADNote
provides real-time traffic conditions by automated detections using
future-generation commodity sensors. We built a prototype of
ROADNote; after that, we conducted experiments to get real-time
road-closer information by visual sensors (i.e., drone, camera).
ROADNote facilitates to reduce of average travel time by 3.48
minutes and distance by more than 300 meters.

Index Terms—road closure detection, smart city, automated
detection, AV, UAV, smart mobility

I. INTRODUCTION

Navigation apps have become an important part of our daily
lives and offer several benefits. For example, it is a handy
tool for traveling, searching, and real-time location sharing.
According to a survey conducted in 2018, more than 77% of
smartphone owners regularly use navigation apps, especially
87% of whom use maps when driving [1]. The monthly use
information of maps application from multiple marketplaces
shows the increasing growth of uses in present days [2]. In
addition, services are changing from static apps to interactive
real-time guides. Several navigation applications provide navi-
gation services to users, including Google Maps1, Waze2, Apple
Maps3, MapQuest4, and so on. Though the features are different
in these applications, the primary functionality is identical;
use the Internet connection to a GPS navigation system to
provide instructions on arriving at a given destination. Some
applications provide offline support but are unable to deliver
real-time updates. However, now popular map applications (i.e.,
Google Maps, Apple Maps, and Waze) are almost accurate in
estimating travel time.

1Google Maps - https://www.google.com/maps
2Waze - https://www.waze.com/live-map/
3Apple Maps - https://www.apple.com/maps/
4MapQuest - https://www.mapquest.com

Map applications show real-time traffic conditions by com-
bining crowdsourced data from their user base or partners
using roadside sensors and historical data. Then the prediction
model applies to calculate the travel time, route, alternatives of
suggested routes, etc. In addition, these applications use official
data from local authorities and user feedback or reports to show
road closures [3], [4]. Therefore, crowdsourced data from the
community is crucial for Real Time Closure (RTC), where
users manually report to the app. Different apps display the
reported data to other users in accordance with their policies,
and it varies on the platforms how long (e.g., a few minutes
to months) it takes to authorize for others. For example, Waze
collects data from its application users and reports it in a
specific context; it depends entirely on the user community,
where updates are quicker but may not be accurate.

On the other hand, cities are constantly bustling with activity.
Residents frequently deal with traffic congestion, unscheduled
road closures, road maintenance, and emergency management.
In addition, sometimes festivals, games, and political rallies
take place on the city street. The map applications often can not
reliably accommodate these conditions. Maps that rely directly
on user reports do not display these unannounced closures
unless someone visits the location and manually reports to
the application. In addition, the route closure is shown on the
maps until people report it, even though the road resumed
traffic way before that report. Therefore, some road closures
remain unnoticed by maps, whereas some roads continuously
show as closed. Though contemporary maps may provide
an alternate route automatically, it takes longer to reach the
destination. When there is one-way and single-lane traffic,
the problem worsens. In addition, maps that rely upon local
official data report to the maps and instantly re-route the traffic.
However, it happen that the road might not close in reality.
Therefore, crowdsourcing in dynamic urban contexts must be
enhanced and automated using next-generation technologies
and methodologies.

The rapid proliferation of smart commodity sensors has
increased interest in developing applications that collect image
and video data. In addition, the advancement in drones and the
autonomous vehicles (AV) industry has created an opportunity
to get real-time visual data in urban environments [5], [6].
Therefore, in addition to the primary task, drone fleets in
aerial delivery and AV on the road could capture on-demand



road conditions [7], [8]. In the future, when hundreds if not
thousands of drones will operate flights in the sky could detect
road closures on-demand and report to the maps. The same
thing might happen for the AV. There are two possible scenarios:
first, drones and vehicles might detect road closures and submit
them automatically to maps; second, the map could request
confirmation of any road closure reports for specified locations.

This study analyzes scheduled and unscheduled road
closures in the urban environment. We conducted an
observational study in 15 days time periods in a mid-sized US
city. The study investigates how crowdsourcing data causes
the discrepancy in road closure on maps. Then, we propose
ROADNote, an automated system for reporting road closures
driven by drones and autonomous vehicles. The ROADNote
application notifies the users if there is any road closure on
the route. We developed a proof of concep of the ROADNote
using Android platform and conducted an experiment in a real
road closure condition. Finally, we created a virtual traffic
model using the Simulation of Urban Mobility (SUMO) to
accommodate the described system [9].

Contributions: The contributions of this paper are as follows:
1) This study investigates instances where the maps appli-

cation fails to give accurate data.
2) We assess 23 incidences and analyze the impact in terms

of time and distance.
3) We proposed ROADNote, an automated road closure

detection system based on an urban sensor. We
implemented a proof of concept of ROADNote and
assessed the feasibility.

Organization: The rest of the paper is organized as follows:
in Section II, we discuss existing studies of road closures
update. Section III presents the observational study details.
In Section IV, we discuss the ROADNote architecture and
the implementation details in Section V. Finally, Section VI
presents the findings, and we conclude in Section VII.

II. BACKGROUND

The quality of the navigational map is greatly influenced by
delayed and missing detection of road closures. However, a
handful of research has been conducted on map-inference/map-
update, and existing solutions rely on crowdsourced data
and user trajectories to identify road closures [10]. However,
trajectory data often result in missed detection due to skewed
data distribution and the co-occurrence of multiple errors with
identical features [10], [11]. Some providers use static urban
traffic sensors and local traffic data for detecting closures.
However, the dynamic nature of the road networks and lack of
mobility of sensors limit their uses. In addition, previous map-
update research focuses more on detecting missing roads than
identifying road closure events [12]. Some research classified
road closures as a traffic anomaly and sought to identify
them based on anomalous traffic situational changes [13]–[15].
These studies can be divided into two categories: threshold-
based and statistics-based methods. Wang et al. [16] and

Stanojevic et al. [17] developed threshold-based techniques
for discovering higher and lower thresholds from historical
data and identifying road closures by detecting abnormalities
in traffic flow sequences in the time dimension. In contrast,
by developing a Poisson process, Pietrobon et al. suggested a
statistical-based technique for detecting road closures [11]. On
the other hand, the traffic change depends on urban regions
and roads, capturing the spatial and temporal dependences for
traffic prediction is important. Therefore, some studies adopted
graph-based structures for traffic prediction [18].

III. ROAD CLOSURE IN CITY

We conducted an observational study in a mid-sized US city
where the total population in the metropolitan area is more than
1.1 million as of 2020 [19]. The study duration was 15 days,
and we observed a total of 23 road closure incidents where there
was a mismatch between real scenarios with map applications.
All the experiment was held in or near the downtown area.
For comparison, we chose three map applications (Google
Maps, Waze, and Apple Maps) based on their market share.
The selected region contains the urban university campus and
the downtown of a metropolitan area. The estimated size of
that area is ≈8 square miles; traffic varies on the locations,
but one of the intersections has reported an average of 2048
(1480 + 548 in two cross street) vehicles per hour [20].

A. Methodology

A volunteer team roamed around this target area at different
times of the day and took note (e.g., place, duration of
the closure, photos, etc.) if there were any scheduled and
unscheduled road closures. After spotting, we immediately
compared the road’s actual condition with map applications
and only included them if there was an anomaly. In addition,
we measured the time for re-routing to go to a point in map
applications due to the road closure.

B. Closure Observation

Initially, we recorded 27 incidences of road closure
information discrepancy. However, we discarded four cases
where at least one map application has shown the closure
information in a short period (within 30 minutes after we
notice) if not real-time. We divided the rest of the 23 cases
into three categories:

1) The Road Was Closed, Maps Failed To Show It: This
was the most frequent occurrence we observed over 15 days
(Figure 2(a)). There were 16 instances in which roads were
closed for various reasons, yet map applications failed to
provide this information and have never shown them. These
closures lasted a minimum of 3 hours to a maximum of 18
hours.

2) The Road Was Open, Maps Showed Closed: There
were four instances in which maps indicated that a road was
closed, but in reality, they were open to traffic (Figure 2(b)).
We assume that map applications may use local official
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Fig. 1. Road closure observation. (a) shows that the road was closed for various reasons; however, the map applications never showed them. (b) shows that
map applications indicate the road closure, but the road was open for traffic.

information for those closures. However, the actual road
closure did not occur or lasted for a shorter duration than
anticipated.

3) The Road Was Closed, Maps Updated After a Certain
Time: We observed three incidences where the maps have been
updated after a long period. For example, in one incidence,
Waze shows a road closure after ≈20 hours from closing.
Google and Apple Maps updated them within one hour after
the update on Waze.

C. Impacts of Discrepancy

We investigate how the road closure information discrepancy
impacts to traffic. The map applications reroute the travel path
if there is any closure. As a result, rerouting often increases
travel time. In addition, urban roadways experience mass traffic
during peak hours; and rerouting incurs additional distance
and expense along with travel time. Figure 2 illustrates how
road closure discrepancy impacted traffic. Here, we present an
instance where the roads around a stadium were blocked for ≈6
hours due to a sporting event. However, this closure information
was not shown in the map applications. We experiment to
identify the impact in terms of time and distance due to this
discrepancy. We used Google Maps to get to a location that
was initially 1.1 miles away by a vehicle. The maps initially
indicated a route with an estimated travel time of four minutes.
However, we were rerouted by map due to road closure and
ended up with a distance of 1.9 miles and a travel time of 11
minutes. If maps had shown the closures in advance and avoided
the primary route, we could have reached the destination in 1.2
miles and four minutes. This was a single-vehicle experiment
where the average speed was 25 - 35 miles per hour; therefore,
it may not represent the overall situation. The elapsed time and
travel distance depend on routes, time on days, average vehicle

speed, available alternatives, and traffic conditions. Therefore,
we run a simulation model using SUMO to investigate the
border impact on mass traffic. The results are discussed in
Section VI.
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Fig. 2. Impacts on travel time and distance by road closure information
discrepancy.

IV. ROADNOTE: AUTOMATED ROAD CLOSURE UPDATE

ROADNote is an automatic road closure monitoring system
where the urban sensors notify and/or verify any occurrence.
Current static and/or manual crowdsensing technologies need a
direct line of sight in order to record any real-time closure. In
addition, the static sensors cannot move to observe the object
of interest directly. The proliferation of commodity drones and
AVs may report these situations in real-time without human



intervention. ROADNote consists of three components, and
Figure 3 shows a high-level architecture.

A. On-Demand Urban Sensing

On-demand urban sensing combines static traffic and urban
sensors, human crowdsourcing data, and dynamic sensors.
Unmanned Aerial Vehicles (UAVs), especially drones and AVs,
are the primary contributors to dynamic sensors. Though UAVs
were initially introduced as military technology, nowadays, it
proved potential in many sectors, including agriculture, traffic
management, construction, etc [21], [22]. In addition, the
delivery drone and air taxi are a reality now. Leading companies
(e.g., Amazon, UPS, DHL, Walmart, etc.) have implemented
drone delivery services. A study predicts that by 2026, more
than a million drones will be delivering retail goods [23]. We
are primarily interested in vision and computing capability,
which can move on demand. The ROADNote technology offers
these fleets a real-time road closure detection platform. UAVs
and AVs may contribute in two ways; first, they can capture
and transmit real-time information on road closures to the
central server as they move. Second, they could verify the
previously reported road closures. It is important to note that
the automated detection and reporting will operate alongside the
existing manual reporting. Therefore, ROADNote will provide
an additional source of real-time data.

B. Processing Unit: Automated Detection Model

This is the extended version of the current central server. Ex-
isting one may analyze and verify (depending on the platform)
manually submitted road closures using users’ crowdsourced
data. However, the extended version will process, detect, and
verify the closures. The automated detection model is situated
combinedly on the on-demand sensor and server-side. The
detection model is responsible for identifying closures from
image or video data. Real-time detection is computationally
expensive, and commodity sensors may not run the complete
analysis on the sensor side. Therefore, the sensors only detect
the road closure signs and send the associated data (i.e., GPS
locations, time, etc.) to the server. The server then runs the
detection model extensively and identifies the road closures.
In addition, the model verifies closures by cross-checking
multiple reports and based on source rank (see IV-D). The
verification can be conducted in two steps; first, the detection
model decides the closures from the available incoming reports;
second, the system sends a request for additional data to the
nearest dynamic sensors, which may not be feasible with static
traffic sensors.

C. Map Application

The map application is responsible for the user interface and
offers real-time navigation based on the user’s location. The
map application only shows the closures after the detection
model thoroughly verifies them. However, there is an option
to report an incident or any emergency in cities manually.
In addition, if the user gives consent, ROADNote tracks the
position and provides a context-based warning if it detects

any closure on the route, even if the user does not use the
applications.

D. Source Rank and Verification Process

ROADNote must verify crowdsourcing data to assure the
accuracy of data received from several sources. ROADNote
accommodates two types of reporters, human users and
dynamic sensors (e.g., UAV, AV, etc.). We defined both these
types as users and adopted a user rating verification system
based on the previous history. We classified users into three
categories based on their ratings: (i) Super User: the most
trustworthy user group whose data correctness was confirmed
to be accurate. ROADNote approves and shows the reported
content without modification and further verification in real-
time. The dedicated UAVs and AVs are also super users. (ii)
Associate User: this group of users is not dedicated to the maps
but provides reliable data. Therefore, ROADNote defines the
high-rated human user and commercial UAVs and AVs as the
associate user. After getting data from these users, ROADNote
shows on the map service if at least one super user approves
it. (iii) Regular User: ROADNote publishes closure data of the
regular user after getting approval by a threshold number of
the super user (at least 1) or associate user (at least 3).

V. IMPLEMENTATION

We have implemented a proof of concept for ROADNote
by adopting a semi-automated process and utilizing different
techniques to implement various components of ROADNote.
Therefore, the implementation procedure is divided into three
phases. First, the objective is to identify road closures from
image data captured by UAVs and AVs (automated reporters).
The advancements in computer vision and the AV industry
have facilitated the detection of objects in real-time. For
automated road closure detection, we used the YOLOv5 [24]
object detection algorithm on the custom dataset. We manually
captured images and videos of road closures for training the
model. We used DJI Mini 2 and GoPro Hero9 Black for
capturing the image and video. All the images we used here
were collected in the city of Birmingham, Alabama, USA.
After prepossessing (i.e., annotation, class define, etc.) and
training the model, we successfully detected the road closure
with confidence greater than 50 (Figure 4). Despite the short
sample size, the model verified that we could detect closures
from AV-captured images in real-time.

Second, we used Amazon Web Services (AWS) to implement
the server-side functionality. After detecting the road closure,
the automatic system notifies the central server. The server
stores image, time, GPS location, and status in the database.
Initially, every report status showed unconfirmed but marked
as confirmed after getting verification. The server sends a
notification to users (super user, associate user, and regular user)
to verify the status of closures. Finally, we have implemented
a mobile application for the Android platform for map services
called ROADNote. We use OpenStreetMap, and its tool suite for
the base map with related read/write and database import/export
activities. ROADNote faces the road closures information
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Fig. 3. High Level architecture of ROADNote. The ”Automated/Manual” reporting denotes the reporting of closures by machines and humans.

Fig. 4. Detection of road closures using YOLOv5 on collected photos.

from the server and adds them to the map with the tag. We
implemented a background service to perform the information-
facing operations and populate them in maps using a foreground
thread.

VI. FINDINGS

Our study on road closure discrepancy in a mid-size US city
for 15 days identified 23 incidences which we classified into
three subcategories. We tracked the duration of these incidents
after we noticed them. In 47.83% of instances, roads were
closed for between three and nine hours; roads were closed for
10 to 14 hours in 30.43% of the times (Figure 5 (a)). Most of
these closures happened during the daytime and were caused
by several events.

We experimented on roadways of closure impacts during
the maps discrepancy observation (Figure 2). However, it
is challenging to accommodate the variable traffic factors
manually (i.e., speed of vehicles, direction, traffic congestion,
route selection, etc.). Therefore, we implemented two traffic
roadways models using SUMO, identical to the original street
and signals. SUMO has a feature to control the traffic externally
and allow real-time input to the system. We utilize Traffic
Control Interface (TraCI) and Python interface, which facilitates
the communication between model and server. We implemented
models with four variable control factors: direction, speed,

distance, and congestion. Figure 5 (b) shows the elapsed time
of 50 vehicles where the system randomly selected all four
above controls. The suggested route is initially provided by
maps when the maps do not have the closure information.
The average suggested time to reach a destination is 6.15
minutes, where the standard deviation (SD) is 1.51. However,
the maps rerouted vehicles due to closures, increasing the total
elapsed time. As a result, the total elapsed time increased to
9.63 minutes (SD is 2.02). Therefore, each vehicle spends an
additional 3.48 minutes on average due to a single unreported
road closure at a particular location. In comparison, ROADNote
offers an alternate route with an average elapsed duration of
6.21 minutes (SD = 1.9) after the models get data from the
server.

Figure 5 (c) presents the comparison of the average distance
to the destination due to the road closures. The average
suggested distance is 1302.35 meters before rerouting. After
reroute, the average distance increased to 1965 meters. There-
fore, vehicles traveled an additional 662 meters on average
due to unreported road closures. In contrast, the ROADNote
suggested route shows 1639 meters on average to reach the
destination. Finally, Figure 5 (d) depicts the cumulative effects
of unreported closures endured within a specified period. We
calculated the cumulative time and distance consequences of a
five-hour road closure. For example, if the maps fail to show
road closure for one hour, the impacted vehicles will spend
additional 3.24 hours and would travel additional 18.29 miles. If
it sustains for three and five hours, the total vehicle’s additional
time will increase to 18.43 hours and 58.26, respectively; the
additional distance will be 95.64 miles and 136.15 miles.

VII. CONCLUSION AND FUTURE WORK

This study presents the observational data on road closure
discrepancy. Due to the city’s dynamic nature, a variety of
unanticipated events/situations result in road closures. As
modern map applications rely on crowdsourced data from
users to detect closures, closures can get undetected in map
services. We present the study data of 23 incidences where the
map applications fail to show. In addition, this study proposes
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Fig. 5. Findings of road closures observation and ROADNote; (a) Shows the closure incidence time interval distribution; (b) presents the elapsed time of maps
application and ROADNote; (c) shows the distnace comparison of the suggested route, re-routed by maps, and ROADNote; (d) illustrates the impact of road
closure discrepancy in terms of time and distance if the situation sustains up to 5 hours.

ROADNote, an automated road closures detection system using
AV and UAV in addition to manual crowdsourcing. Experiments
found that by ROADNote, vehicles could save on average 3.48
minutes of travel times and can travel 326 meters less. In the
future, we will investigate universal road closure in addition to
sign-based road closure. Next steps will also be taken towards
automating the road closure directly from UAV fleets without
server-based computation assistance.

REFERENCES

[1] R. Panko, “The Popularity of Google Maps: Trends in Navigation Apps in
2018.” https://themanifest.com/app-development/trends-navigation-apps,
2018. [Online; Last Accessed June 18, 2022].

[2] A. He, “People Continue to Rely on Maps and Navigational
Apps.” https://www.emarketer.com/content/people-continue-to-rely-on-
maps-and-navigational-apps-emarketer-forecasts-show, 2019. [Online;
Last Accessed June 18, 2022].

[3] J. Lau, “Google Maps 101: How AI Helps Predict Traffic and Determine
Routes.” https://www.emarketer.com/content/people-continue-to-rely-on-
maps-and-navigational-apps-emarketer-forecasts-show, 2020. [Online;
Last Accessed June 20, 2022].

[4] J. J. Rojas, “Using Traffic Data with Maps and Routes.”
https://developer.tomtom.com/blog/build-different/using-traffic-data-
maps-and-routes, 2021.

[5] A. Gohari, A. B. Ahmad, R. B. A. Rahim, A. Supa’at, S. Abd Razak,
and M. S. M. Gismalla, “Involvement of Surveillance Drones in Smart
Cities: A Systematic Review,” IEEE Access, 2022.

[6] R. Fan, M. J. Bocus, Y. Zhu, J. Jiao, L. Wang, F. Ma, S. Cheng,
and M. Liu, “Road Crack Detection using Deep Convolutional Neural
Network and Adaptive Thresholding,” in 2019 IEEE Intelligent Vehicles
Symposium (IV), pp. 474–479, IEEE, 2019.

[7] C. Kyrkou and T. Theocharides, “EmergencyNet: Efficient Aerial Image
Classification for Drone-based Emergency Monitoring Using Atrous
Convolutional Feature Fusion,” IEEE Journal of Selected Topics in
Applied Earth Observations and Remote Sensing, vol. 13, pp. 1687–
1699, 2020.

[8] M. A. Hoque, R. Hasan, and R. Hasan, “R-CAV: On-Demand Edge
Computing Platform for Connected Autonomous Vehicles,” in 2021
IEEE 7th World Forum on Internet of Things (WF-IoT), pp. 65–70, IEEE,
2021.

[9] M. Behrisch, L. Bieker, J. Erdmann, and D. Krajzewicz, “Sumo–
simulation of urban mobility: an overview,” in Proceedings of SIMUL
2011, The Third International Conference on Advances in System
Simulation, ThinkMind, 2011.

[10] S. Cai, T. Wu, J. Mao, and C. Jin, “Road closure detection based upon
multi-feature fusion,” in Proceedings of the 29th International Conference
on Advances in Geographic Information Systems, pp. 354–364, 2021.

[11] D. Pietrobon, A. P. Lewis, and G. S. Heverly-Coulson, “An algorithm
for road closure detection from vehicle probe data,” ACM Transactions
on Spatial Algorithms and Systems (TSAS), vol. 5, no. 2, pp. 1–13, 2019.

[12] P. Chao, W. Hua, and X. Zhou, “Trajectories know where map is wrong:
an iterative framework for map-trajectory co-optimisation,” World Wide
Web, vol. 23, no. 1, pp. 47–73, 2020.

[13] S. Chawla, Y. Zheng, and J. Hu, “Inferring the root cause in road traffic
anomalies,” in 2012 IEEE 12th International Conference on Data Mining,
pp. 141–150, IEEE, 2012.

[14] H. Zhang, Y. Zheng, and Y. Yu, “Detecting urban anomalies using
multiple spatio-temporal data sources,” Proceedings of the ACM on
interactive, mobile, wearable and ubiquitous technologies, vol. 2, no. 1,
pp. 1–18, 2018.

[15] L. X. Pang, S. Chawla, W. Liu, and Y. Zheng, “On detection of
emerging anomalous traffic patterns using gps data,” Data & Knowledge
Engineering, vol. 87, pp. 357–373, 2013.

[16] Y. Wang, X. Liu, H. Wei, G. Forman, C. Chen, and Y. Zhu, “Crowdatlas:
Self-updating maps for cloud and personal use,” in Proceeding of the
11th annual international conference on Mobile systems, applications,
and services, pp. 27–40, 2013.

[17] R. Stanojevic, S. Abbar, S. Thirumuruganathan, G. D. Francisci Morales,
S. Chawla, F. Filali, and A. Aleimat, “Road network fusion for
incremental map updates,” in LBS 2018: 14th International Conference
on Location Based Services, pp. 91–109, Springer, 2018.

[18] L. Zhao, Y. Song, C. Zhang, Y. Liu, P. Wang, T. Lin, M. Deng, and H. Li,
“T-gcn: A temporal graph convolutional network for traffic prediction,”
IEEE Transactions on Intelligent Transportation Systems, vol. 21, no. 9,
pp. 3848–3858, 2019.

[19] Wikipedia, “Birmingham, Alabama, USA.” https://bit.ly/3NQfx1t, 2022.
[20] R. Hasan, M. A. Hoque, Y. Karim, R. Griffin, D. Schwebel, and R. Hasan,

“Smartphone-based Distracted Pedestrian Localization using Bluetooth
Low Energy Beacons,” in 2020 SoutheastCon, pp. 1–2, IEEE, 2020.

[21] P. Radoglou-Grammatikis, P. Sarigiannidis, T. Lagkas, and I. Moscholios,
“A compilation of uav applications for precision agriculture,” Computer
Networks, vol. 172, p. 107148, 2020.

[22] S. Srivastava, S. Narayan, and S. Mittal, “A survey of deep learning
techniques for vehicle detection from uav images,” Journal of Systems
Architecture, vol. 117, p. 102152, 2021.

[23] L. Goasduff, “Why Flying Drones Could Disrupt
Mobility and Transportation Beyond COVID-19.”
https://www.gartner.com/smarterwithgartner/why-flying-drones-could-
disrupt-mobility-and-transportation-beyond-covid-19, 2020.

[24] G. Jocher, “YOLOv5 by Ultralytics.” https://github.com/ultralytics/yolov5,
2020.


