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Abstract

Pedestrian safety has emerged recently as a public health challenge worldwide. People are being physically harmed due to losing
focus on their surroundings and putting safety at risk. Though pedestrian safety is a shared responsibility, researchers suggest that
distractions by smart devices and reduced cognitive skills are major causes of accidents. There is a scope to assist pedestrians
through amplifying cognitive skills using heterogeneous Internet of Things (IoT) and sensors. These technologies could discover and
warn users about unanticipated events such as just-in-time warnings about the hazards, distractions, extreme weather calamities,
and potential impending dangers. An automated personalized agent helps monitor, diagnose problems, and protect people in an
urban environment. Researchers have proposed various systems and implemented them in multiple domains. In this survey, we
assessed, analyzed, and compared the most recent research on pedestrian safety. We identified the challenges, research gaps, and

future directions toward using technology to improve pedestrian safety.
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1. Introduction

In recent years, pedestrians engage in various risky activ-
ities due to the increasing popularity of mobile devices and
easy accessibility to the internet. For example, people use their
smartphones to text, talk, play games, watch videos, etc., while
walking. People use smartphones at busy intersections and on
crowded sidewalks [1, 2, 3]; as a result, they are unaware of
their surroundings [4]. This is known as “Distracted Walking”
[5, 6], while the people who engage in distracted walking are
referred to as “Smartphone Zombies™ or “Smombies” in short
[7, 8]. Smartphone Zombies are not aware of situational changes
and impending obstacles. One study found that pedestrians who
text while walking are 50% less aware of environmental changes
[9]. Another study found that 75% of participants distracted
by a smartphone failed to notice a clown on a unicycle as they
walked by it [10]. Such distractions can lead to fatal accidents
[5, 11]. For example, Nasar et al. show that an estimated 69.5%
of injuries accounted for pedestrians who talk on the phone in
public places [12].

It is possible to provide timely interventions that increase
situational awareness and reduce distraction by the Internet of
Things (IoT), wearable devices, smart sensors, and smartphones
[8, 13, 14]. These technologies allow people to efficiently con-
duct their daily activities, simplifying many tasks that once were
difficult to perform. Currently, there are 23 billion IoT devices
deployed worldwide [15]. These devices are heterogeneous and
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use different protocols, architecture, and standards. In addition,
multiple cities implemented various infrastructure and proposed
policies to mitigate the risk of pedestrian injuries. For example,
a separate lane has been set up for smartphone users who use
their devices while walking in Washington, D.C!. In Delaware,
special signage has been installed on sidewalks and zebra cross-
ings to warn the pedestrians at the busy intersections. In Xi’an,
China, city authorities have designated a cellphone lane, which
attempts to alert distracted pedestrians?. In addition, some states
in the U.S. and multiple countries have imposed fines for dis-
tracted behaviors; law enforcement reminds drivers to look for
pedestrians everywhere [16].

On the other hand, modern vehicles are getting intelligent
with smart sensors and technologies. Vehicles can warn drivers
and pedestrians by detecting a potential collision beforehand
[17]. The automobile industry has adopted various collision
detection techniques, including Pre-Collision Systems (PCS),
Collision Prevention Systems (CPS), Collision Avoidance Sys-
tems (CAS), etc. [18]. However, these systems have limitations
and are inefficient in giving timely alerts to distracted pedestrians
and drivers. Before the concept of Vehicle to Pedestrian (V2P)
communication, previous studies concentrated on driver-side
warnings rather than warning the pedestrians. However, most
accidents occur when pedestrians walk on the pavements and
cross the intersections [19, 20]. The risk increases when pedes-
trians’ cognitive skills are split into multiple tasks or distracted
by anything. Researchers focused on localizing and tracking the

"https://finance.yahoo.com/news/cellphone-talkers- get-their-own-sidewa
1k-lane-in-d-c-92080566744.html

Zhttps://www.cnbc.com/2018/06/08/for-chinese- pedestrians- glued- to- their
-phones-a-middle-path-emerges.html
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pedestrians and potential obstacles, but the existing techniques
of localization track on a coarse-grained level. Wearable device-
based systems mostly rely on shoes, waist, and head-mounted
sensors, which require additional hardware. In recent years, ac-
tive research has been conducted using smartphones or dedicated
sensors to warn pedestrians and sense the surrounding environ-
ment. Therefore, this research survey provides a comprehensive
study of such safety systems in terms of effectiveness, accuracy,
discuss challenges, and future research directions.

Contributions: The contributions of this survey are as follows:

1. This study identifies a wide range of safety systems offered
for pedestrians and discusses their efficiency and usability.

2. The survey provides a competitive analysis of existing ob-
stacle detection and collision alert systems, their advan-
tages, and limitations.

3. Finally, we discuss the research challenges and future di-
rection of pedestrian safety based on current systems and
technology.

Organization: The rest of this survey is organized as follows:

Section 2 explains the methodology of this survey. Section
3 provides the motivation. We explore various safety systems
for pedestrians in Section 4. Section 5 and Section 6 present
existing applications for obstacle detection, their advantages and
limitations, respectively. We discuss privacy issues in Section 7.
Section 8 presents research challenges and future directions.
Finally, concluding remarks in Section 9.

2. Methodology

This study follows the systematic literature review guidelines
for providing an overview of pedestrians’ safety applications
that include the following steps. (i) we highlight the problems
of pedestrians’ safety and highlight the motivations for using the
Internet of Things and sensors, (ii) we search for relevant litera-
ture on pedestrian safety, (iii) we define the selection criteria to
filter out high-quality and relevant articles, and (iv) we extract
and synthesize the findings from the studies.

2.1. Search Strategy

To identify relevant articles for this survey, we performed a
literature search on Google Scholar, IEEE Xplore, ACM Digital
Library, SpringerLink, and ScienceDirect. The first literature
search was conducted in March 2021 and found 724 articles.
The studies retrieved articles that were published between 2015
and 2021. The following search strings have been used to find
relevant articles and references.

(Pedestrian OR Distracted OR Smartphone Zombies OR By-
stander OR V2* OR Inattentional) AND (safety OR collision*
OR privacy OR vehicles* OR injuries OR alert™ OR behavior OR
*crossing® OR trust® OR traffic* OR smartphone* OR accident
OR *obstacle* OR awareness* OR *sensors* OR *automated*)

We manually deleted certain articles that appeared in search
results but were unrelated to our survey. We have emphasized
high-quality publications that were peer-reviewed in reputable
venues. After applying the selection criteria, we retrieved 113
relevant articles. We analyzed each article’s bibliography during
the literature review. If an item in the bibliography referred to
an article relevant but not yet been downloaded, we downloaded
that article. We retrieved a total of 143 articles after the first
cycle. In January 2022, we applied the same selection strategy
and retrieved 18 more articles.

2.2. Selection Criteria

We have conducted a manual review after retrieving the arti-
cles from the sources. Therefore, inclusion criteria were adopted
to identify and analyze relevant articles. The criteria for inclu-
sion are as follows.

* Articles focus on technologies from the pedestrians’ per-
spective.

* Articles demonstrate pedestrian safety prototypes include
obstacles detection, collation avoidance, everything to
pedestrian communication, etc.

* Articles present the evaluation of such systems or conse-
quences, such as privacy, security, behavior analysis, etc.

3. Motivation

Walking is the most basic form of transportation. It is inex-
pensive, healthy, and environmentally friendly [21]. Though
there are several preferences in vehicles, everyone is pedestrian,
even for a moment in life. Unfortunately, pedestrian safety has
come at risk in recent years whether people walk for work or
exercise with dogs at the park. For example, In the United States,
pedestrian fatalities have increased sharply [20]. According to
the Governors Highway Safety Association (GHSA), the num-
ber of pedestrian fatalities increased by 53%; in contrast, the
combined number of all other traffic deaths increased by 2% in
the last ten years from 2009 to 2018 (Figure 1)[16]. In addition,
pedestrian fatalities rates are more significant in third world and
low-income countries [22].

Multiple factors are related to this alarming fatality rate. Re-
search suggests distraction by smartphones is one of the major
reasons for pedestrian injuries and deaths [5, 23]. Some recent
accident studies support this claim too. For example, an esti-
mated 150,000 traffic accidents and 256 deaths were caused
by the Pokémon Go® mobile game in the first 148 days after
introduce; the economic cost is between $2 billion to $7.3 bil-
lion in the United States [24]. People have also died by road
crashes while using the Tiktok app* [25]. The increasing num-
ber of active smartphone users also supports the claim. For
example, active smartphone users increased by 50 million in
2019 in the United States [16]). Recent data shows that 96% of

3Pokémon Go - https://www.pokemongo.com/en-us/
4Tiktok - https://www.tiktok.com/en/
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Figure 1: The percentage increase in pedestrian fatalities, all other traffic fatali-
ties, and total traffic fatalities from 2009 to 2018 [16].

Americans now own cellphones and more than 81% of those are
smartphones [26].

Distracted pedestrians face at least three types of attention
impairment — visual, aural, and cognitive. If the pedestrians’
vision is partially or fully directed to the smart devices while
crossing the street, they could suffer impaired visual attention
[27]. Imperfect visual attention limits the ability to detect and
avoid obstacles while walking [28]. The pedestrian would suffer
hearing or auditory impairment when talking on the phone or
listening to music while walking on the street or crossing the
intersection. There is initial evidence that auditory cues are used
extensively by safe adult pedestrians [29, 30, 28]. Finally, a
distracted pedestrian suffers from reduced cognitive attention.
Smart devices can make our brain lazy and reduce cognitive
skills [31]. Pedestrians require a substantial processing of stimuli
and extremely rapid decision-making during a walk in the urban
environment.

One effective strategy to improve pedestrian safety is to in-
crease cognitive ability through assistive technologies and sen-
sors [32, 33, 34]. Such systems identify potential dangers and
improve cognitive ability by guiding pedestrians as Guardian An-
gel. These techniques help to protect from the collision between
pedestrians and other potential obstacles. Another approach is
integrating pedestrians into the smart vehicle communication
loop [35, 36]. Modern connected vehicles interchange data to
build fast and safe transportation. Such a system would pro-
tect pedestrians from collisions and avoid dangers based on
data received by pedestrians’ devices. Despite such progress
in developing the technology to support intervention systems
and vehicle-pedestrian communication, little progress has been
achieved in reducing fatalities.

3.1. Scope of this survey

Several components are involved in pedestrian safety systems,
including vehicles, pedestrians, road conditions, traffic rules, etc.
These components have different perspectives and guidelines to
reduce accidents and make roadways safe. However, pedestrians
are the prime factor in all these safety components. This survey

will focus on safety systems and technologies that pedestrians
use.

4. Pedestrian Safety Systems

Multiple studies have been conducted to reduce pedestrian
fatalities and some proposed systems have already been imple-
mented in real life. We have divided the existing and proposed
safety systems into three broad categories — (i) Active Inter-
vention, (i1) Smart Vehicles, and (iii) Infrastructure and Traffic
Signal.

4.1. Active Intervention

Warning pedestrians for potential threats is important for im-
proving pedestrian safety. With technological advancements in
smartphones and wearables, various systems have been proposed
to alert the pedestrian based on the surrounding environment if
the system identifies a situation as dangerous. These systems
consist of multiple sensors and sense contextual data, includ-
ing pedestrian location, surrounding objects, posture, motion,
etc. These applications not only monitor potential collisions
[37, 38, 34, 39] but also influence pedestrian behavior [40, 3].
Pedestrian safety systems emerge in both industries and aca-
demic sectors due to technological advancement. For example,
Wang et al. [41] proposed Walksafe, a system for detecting in-
coming vehicles for pedestrians on an active call while crossing
streets. The back camera of phones captures vehicles’ front
views and rear views then apply machine learning techniques
to identify the approaching vehicles. Tung et al. [42] proposed
BumpAlert, which identifies nearby obstacles by combining cam-
era, speaker, and microphone inputs. In both cases, systems alert
the pedestrian after detecting the potential accident. We discuss
the obstacle detection and active alert systems in Section 5.

4.2. Smart Vehicles

Recent developments in the automobile industry are dramati-
cally evolving through modern technologies that help to protect
pedestrians on the road; one such example is autonomous cars,
which are equipped with various sensors for pedestrian safety
[43]. In 2005, Automated Advanced Driver Assist Systems
(ADAS) started to be adopted by vehicle manufacturers. ADAS
is the active protection system that offers pedestrian detection
and crashes avoidance on roads. It took twenty years of research
to make ADAS available for vehicles in the market [44]. After
that, multiple approaches have been proposed to avoid collisions
with pedestrians and bicyclists, such as Automated Driving Sys-
tems (ADS) [45]. ADS is still in the early testing phase and is
limited in its capabilities [46, 47]. However, multiple manufac-
turers have adopted ADS for public road testing in recent years.
In terms of pedestrian safety, we can divide automobile safety
systems into two categories — (i) Built-in Sensor-based Systems
and (ii) Vehicle-pedestrian Communication.



4.2.1. Built-in Sensor-based Systems

Modern vehicles are equipped with various exteroceptive sen-
sors, which are related to information in the vehicle’s surround-
ings [48, 49]. These sensors are not directly related to the vehicle
state (e.g., speed, accelerations, component integrity, etc.). Exte-
roceptive sensors are part of passive safety systems because they
detect pedestrians and warn drivers. Active safety features, such
as Pedestrian Automatic Emergency Braking (PAEB), constitute
lifesaving technology that is quickly becoming prevalent in pas-
senger vehicles [S0]. The system use cameras or a combination
of cameras and radar. The PAEB system provides breaking while
any pedestrian is in front of the vehicle, and drivers’ actions are
insufficient. Besides that, vehicle manufacturers are adopting
various safety measures for pedestrians. For example, Lexus RX
2017 warns drivers after detecting pedestrians by Pre-Collision
warning systems [51]. If any potential collision is detected and
the human driver has not performed any action, the automated
system gets control of the vehicle (e.g., Ford Fusion 2017, BMW
3 Series, etc.). Usually, sensors collect data independently, and
safety systems use those data from multiple sensors to get results.
Here are some built-in sensor-based systems for pedestrians:

a) Camera-based Solutions: There are multiple configurations
of camera-based systems available, including monocular,
infrared, stereo, etc. Li et al. [52] and Wu et al.[53] propose
a stereo camera-based pedestrian detection system. The
stereo camera provides 3D information about the pedestrian
and surroundings. Additionally, Far Infrared Ray (FIR)
technology-based system uses infrared light waves to spot
obstacles at night [54]. Usually, pedestrians are hot and are
easy for FIR detection [55, 56]. Recently, convolutional
neural network-based techniques have been used to detect
pedestrians accurately [57, 58].

b) LiDAR-based Solutions: Light Detection and Ranging (Li-
DAR) based systems provides 3D positions and shapes of
objects. LiDAR works at night because the performance
is not affected by the scene’s illumination and can detect
the surrounding elements. Several approaches for LIDAR-
based detection are shown in Liu et al. [59] and Navarro et
al. [60]. In both cases, LiDAR is used to obtain the contour,
position, and distance information of objects. Next, the
safety systems apply either training-based algorithms or
segmentation methods to detect pedestrians.

¢) Radar-based Solutions: The Radar sensors guarantee sys-
tem credibility regardless of environmental conditions (e.g.,
dust, light, weather, etc.) [61]. That is why the main uses
of Radar are to trace and track other vehicles on the road.
However, Severino et al. [62], and Hyun et al. [63] utilized
Radar to detect pedestrians using the Doppler Effect.

4.2.2. Vehicle-Pedestrian Communication

Recently, Vehicle-to-Pedestrian (V2P) has emerged in the
autonomous vehicle industry [64]. It is the system of identi-
fying and communicating with pedestrians known as Vulner-
able Road Users (VRUs), and V2P is a subset of Vehicle-to-
Everything(V2X) communication [65]. It facilitates warnings to

the pedestrian about an approaching vehicle and provides infor-
mation to the driver for the vulnerable road users. Figure 2(a)
shows how an autonomous car communicates with pedestrians,
and 2(b) illustrates the V2P communication systems architec-
ture.

In the V2P, associated parties (e.g., vehicles, pedestrians, bi-
cyclists, etc.) communicate by safety messages [67]. Usually,
these messages exchange periodically and carry real-time status
and position-related data. The communication channel could
be through direct ad-hoc technologies, such as IEEE 802.11p
[68], or infrastructure-based communication, such as cellular
technology [69]. Ultimately, V2P communication makes pedes-
trians visible to the driver even when they are not in the line of
sight, and pedestrians reacts appropriately to approaching cars.
Hussein et al. developed a mobile application that exchanges
information between nearby drivers and pedestrians and alerts
them for potential collisions [36]. V2ProVu, is a V2P commu-
nication system proposed by Anaya et al. [35]. The Venerable
Road Users (VRU), or pedestrians, use a smartphone as the
communication device and receive safety messages from nearby
vehicles [35]. Then, the smartphone predicts the collision proba-
bility based on the received WiFi data. V2PSense, developed by
Li et al. [70], sends alerts to pedestrians by the cellular network.
Previously, Liu et al. [71] developed POFS; the system uses
IEEE 802.11p and WiFi to support V2P and Vehicle to Vehicle
(V2V) communication.

The interaction between pedestrians and autonomous vehi-
cles is essential because, in real life, pedestrians decide by ex-
changing some familiar gesture, sign, or sound with the drivers
irrespective of language and their skills. However, autonomous
technology limits the interaction with pedestrians and raises a
safety issue regarding trust between VRUs and vehicles [72, 73].
For example, how vehicles would show messages for pedestri-
ans or what would be an effective warning, etc. Researchers
have proposed various communication mechanisms to support
the interaction between humans and vehicles. One such way
is vehicle-mounted interfaces. For example, Eyes on a car, de-
veloped by Chang et al. [74], proposes to use digital eyeballs
mounted on the front lights to replace traditional eye contact
between pedestrians and drivers. When the sensors on vehicles
detect pedestrians intend to cross, the eyes start staring, which
ensures to the pedestrian that the vehicle will stop to allow cross-
ing. The LED stripe-based system called Smiling car is proposed
by Locken et al. [72]. In normal driving conditions, the inter-
face shows a horizontal yellow line. The line change to a smile
when vehicles detect a pedestrian. Table 1 shows the latest devel-
opment of communication for V2P based on vehicle-mounted
interfaces.

Another way to show messages to pedestrians is projection-
based interfaces. The main limitation of vehicle-mounted inter-
faces is visual impairments. For instance, the mounted display
could be poorly visible due to bad weather or the vehicle being
too far from the pedestrians. Burns et al. proposed a system in
which a stripe of parallel lines is projected directly in front of
the vehicle [83]. This animated stripe comes up with arrows that
indicate the vehicle’s next move. Nguyen et al. proposed a more
sophisticated pattern projection [84]. The vehicle project the
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Figure 2: (a) An autonomous car is communicating with the pedestrian indicating that safe to cross the intersection. Source [66]. (b) Vehicle-to-Pedestrian (V2P)

communication architecture.

Table 1: Vehicle-to-Pedestrian communication Interface

Paper Technology Used Content Type Modality
Mahadevan et al. [75] Wi, Bluet?ﬁ:ﬁiﬁ izgizn;igeiiﬂlsz: Ilt/llé)lt)ion, Speaker, Information Visua;l{,azggcciitory ’
Lietal. [76] Car External Display Advice Visual
Fridman et al. [77] Car External Display, Projection, Vehicle Lights and Signals Information, Advice Visual
Ackermann et al. [78] Light strip, Car External Display, Projection Information, Advice Visual

Bockle et al. [79] Light strip, Speaker

Information Visual, Auditory

De Clercq et al. [80]

Car External Display, Vehicle Lights and Signals

Information, Advice Visual

Hudson et al. [81]

Car External Display, Speaker

Advice Visual, Auditory

Stadler et al. [82] Car External Display

Advice Visual

wave-shaped red light when running; the light turns yellow when
the vehicle slows down and projects the green light when the
vehicle stops completely. In addition, the multi-modal interface,
which is especially beneficial for visually impaired persons, and
Augmented Reality Based systems have been proposed for V2P
[85, 86].

4.3. Smart Infrastructure and Traffic Signaling

In urban areas, accidents between pedestrians and vehicles
at traffic intersections are common issues. According to one
study, 71% of all accidents in which one party was pedestrians
and 58% of all accidents in which one party was bicycles occur
inside the urban areas in Europe, especially at intersections and
crosswalks [87]. Therefore, cities offer extensive facilities for
pedestrian safety through a citywide network of infrastructure
and adaptive traffic systems. Traffic lights have been used to
regulate traffic and protect public safety for a long time. Re-
cently, the smart traffic control system has been introduced to
ensure safety and improve performance. Usually, traffic lights
switch their states (i.e., walk, stop, etc.) periodically, and it is
fixed. In contrast, the intelligent signaling system can extend
or reduce the time based on road conditions and pedestrian sta-
tus. This system is connected with sensors and can identify

the pedestrian on the street while crossing [88]. If the system
identifies pedestrians crossing the street but cannot reach the
other side within time, it delays the switching. In contrast, it
reduces the switching time if no pedestrians or vehicles wait. As
the dynamic traffic intersection is complex, the computational
complexity increases exponentially. Recent advancements in
deep learning techniques are extensively used to solve this di-
mensionality issue [89, 90, 91]. One of the safety issues for
pedestrians is crossing the road at undesignated places and right
of way accidents. The traditional traffic system is incapable of
mitigating the accident caused by undesignated crossings [92].
However, automated vehicles (AVs) and vehicle-to-pedestrian
communication showing promising prospects [73, 93]. Hoggen-
mueller et al. suggested a prototype to improve pedestrian safety
when crossing busy roadways without designated pedestrian
crossings [94]. The proposed system would use 3D 360-degree
video recordings of the street and render them in virtual reality.

Nowadays, people engage in their phone screens intensely,
and they are unaware of the signal light and are not taking their
eyes away from their screen while they cross the street. Some
cities (e.g., Tel Aviv, Israel; Augsburg, Germany; Bodegraven,
Netherland, etc.) installed pavement lights synced with the
actual traffic signal. Therefore, pedestrians can see the green



and red lights on the ground without looking at the light post
[95].

5. Obstacle Detection and Alert

This section will discuss details of obstacles detection and
collision detection systems. The technology used in the pedes-
trians’ safety systems is directly related to the end-users. For
instance, pedestrians have to adopt these technologies or need
to carry gadgets. Therefore, we believe it is understandable to
categorize them according to the technology. This study cate-
gorized the existing applications into ten groups based on the
technology used. Table 2 shows ten groups and a list of existing
applications.

5.1. Motion Sensor Based

Modern devices are equipped with inertial sensors, such as
accelerometers, gyroscopes, magnetometers, etc. [122]. These
sensors have the functionality to provide object states (i.e., ori-
entation, acceleration, and angular velocity). Inertial sensors
measure these quantities with three axes and are based on basic
motion laws. For example, the typical coordinate system of the
mobile phone is shown in Figure 3(a). The working procedure
of inertial sensors in other devices (e.g., wearable devices, dedi-
cated sensors, etc.) is similar to smartphones. Motion sensors
measure how the device is oriented in space and how it acceler-
ates when moving. The typical motion sensor found on devices
triggers screen rotations and is used for various applications
to detect shakes, fist bumps, hand gestures, bumpy roads, and
other features. Figure 3(b) shows a generic pedestrian safety
architecture based on motion sensors.

Zhou et al. [114] proposed HeadsUp, a walk pattern recog-
nition system. HeadsUp locks the phone screen if pedestrian
looks at their phone while walking. The system identifies the
user states by measuring the phone’s accelerometer and gyro-
scope reading. It defines three-stage mobile phones’ position
during a crossing — phone in the pocket, watching, and calling
state. Vinayaga et al. [102] use activity recognition techniques
to detect distraction and propose a new model called Concur-
rent Activity Recognition (CAR). This model identifies various
pedestrian activities, including running, walking, climbing, etc.,
by frequency matching of sensors data. Jain et al. [96] proposed
LookUp, a shoe-mounted sensors-based system that automati-
cally detects pedestrians’ transition from sidewalk to road. The
target is to create ground profiling based on the roadside curb’s
slope rather than step counting. LookUp detects street entrance
events whenever the sidewalk descends into the street either
through a ramp or a curb and warns the pedestrian. However,
it requires additional shoe-mounted sensors to detect a poten-
tial collision. WatchOUT is another pedestrian warning system
developed by Ou et al. [120], that differentiates sidewalks and
ramps. It segments the steps with smartphones’ built-in sen-
sors (accelerometer, gyroscope, and magnetometer) data by the
magnitude and warns pedestrians on the ramp.

5.1.1. Potential Drawbacks

Implementing an effective safety system based on inertial
sensors is challenging. Several issues are associated with sig-
nal processing and computation (i.e., noise filtering, calibration,
etc.). In addition, motion sensor-based pedestrian safety systems
are highly energy-consuming. For better detection accuracy, the
system required continuous data. In contrast, the large volume
of raw sensor data is challenging to process in lower-end wear-
able devices and smartphones. For instance, LookUp [96, 102]
required an extra computation layer for high-frequency data.
Besides, these proposed systems cannot give a pre-alert to warn
pedestrians. For example, the user would not get a warning until
they step down to the road from the sidewalk [96].

5.2. Camera Based

The mobile camera has developed over time, and it supports a
multitude of techniques that were difficult less than a decade ago.
Smartphone cameras are increasingly used to detect approaching
vehicles towards pedestrians, discover the sidewalk accessibil-
ity, incoming hazard, etc. The camera-based applications work
based on image recognition algorithms. There is a predefined
model — the model is either uploaded to the server or in the users’
device. Then the camera captures the real-time pictures and iden-
tifies the incoming obstacles or hazards using the existing model.
Wang et al.[41] developed WalkSafe, which uses a smartphone
camera to warn the user from incoming vehicles. The system de-
tects vehicles that are in direct line of sight using the rear camera.
It divides the process into offline training and online detection.
In offline training, Walksafe used the MIT CBCL car dataset >
and the Caltech Cars dataset °. Walksafe builds a model with
positive and negative training images and uses it to recognize
positive matches in online detection steps. However, this system
can only detect vehicles when the camera is in a direct line of
sight with vehicles, limiting its use. Jain et al. [105] proposed
TerraFirma. It can characterize the material and texture of the
ground surface by a smartphone camera. The system captures a
large set of images in various lighting and weather conditions.
To reduce battery consumption, it took multiple snaps instead
of videos. TerraFirma detects pedestrians’ transition from the
sidewalk to the street based on the texture. It also determines
users’ actions based on images and sensor data, including in
motion, whether actively using the smartphone, indoor/outdoor,
etc. The AutoADAS [108] and Inspector [99] developed by Wei
et al. and Tang et al. respectively warns the pedestrian while
distracted. The AutoADAS detects the obstacle or hazardous ob-
ject, while Inspector can identify the traffic hazard based on the
distinctive surface pattern. SpareEye developed by Foerster et
al.[113] proposed an idea to detect an object which significantly
differs from the background. Then, if the object is continuously
and quickly getting closer to the user, the user will get a warning.
However, continuous image streaming is not energy efficient,
and it will need much computation power. Yang et al. [111]
used an omnidirectional camera attached to the front side of the

SCBCL car dataset - http://cbcl.mit.edu/software-datasets/CarData.html
®Caltech Cars dataset - http://www.vision.caltech.edu/archive.html



Table 2: Existing research categorized by technology

ID Paper/Reference Application Accuracy Technology Used
5 g
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Al Wang et al. [37] ObstacleWatch 92% v

A2 | Jainetal. [96] LookUp 80 - 95% v

A3 Liu et al. [97] InfraSee 80% v

A4 Wang et al. [41] WalkSafe 77% v

A5 Gruenefeld et al. [14] Guiding Smombies N/A

A6 | Lietal. [98] Auto++ 91% v

A7 Tang et al. [99] Inspector 92-99% v

A8 | Riazetal. [100] SightSafety N/A . .

A9 Hesenius et al. [101] - N/A

A10 | Vinayaga et al. [102] - 75 - 81% v

All | Kanamori et al. [103, | - N/A

104]

A12 | Jain et al. [105] TerraFirma 90% v

A13 | Linetal. [38] pSafety 46-100% v

Al4 | Ishikawa et al. [40] - 87% . .

Al15 | Kimet al. [106] TrailSense 80% v

A16 | Wen et al. [107] UltraSee 94% v

A17 | Wei et al. [108] AutoADAS N/A v

A18 | Patankar et al. [109] - 97% v

A19 | Tungetal. [42] BumpAlert 95% . .

A20 | Kayukawa et al. [110] BBeep N/A v

A21 | Tongetal. [33] - 88%

A22 | Lietal. [32] Safe Walking 91% . .

A23 | Yangetal. [111] Surround-See N/A v

A24 | Wangetal. [112] CrowdWatch 83.3% v

A25 | Foersteretal. [113] SpareEye N/A v

A26 | Kangetal. [13] - N/A

A27 | Zhouetal. [114] HeadsUp N/A v

A28 | Uchidaetal. [115] - N/A .

A29 | Sobhani et al. [116] IHMVR 83%

A30 | Xiaetal. [117] PAWS 95-97% v

A31 | Wangetal. [118] CrackSense 80% v

A32 | Kangetal. [119] SafeAR N/A

A33 | Won et al. [39] SaferCross 90% . .

A34 | Ouetal. [120] WatchOUT 80% v

A35 | Miiller et al. [34] Walk the line 94%

A36 | Hincapié et al. [121] CrashAlert N/A v

“v/” represents the application group

@

=’ represents the part of hybrid application

smartphone to sense the surroundings as the built-in smartphone environment and detecting user activities.
camera can be busy or blocked during active use. They devel-
oped a system called Surround-See to sense the devices’ external
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Figure 3: (a) Coordinate system of mobile phone. (b) A generic pedestrian safety system based on motion sensors. Source [102]

5.2.1. Drawbacks of Camera

The image or video-based warning systems highly depend
on lighting conditions. For example, the detection efficiency
would decrease at night or in crowded areas, and the noise pixels
are created by ambient lighting. The phones’ orientation with
respect to objects and image quality due to mobility makes the
camera system challenging. In addition, the processing of image-
based systems is computationally expensive, if not carefully
designed, can quickly drain the computational resources and
batteries of smartphones. Besides, some researchers used extra
equipment or hardware with the camera, which is not usable in
real life. The direction and alignment of the camera are other
drawbacks of detecting incoming objects. For example, in the
WalkSafe [41] application, the back camera has to align with the
car to avoid an accident.

5.3. Acoustic Based

Nowadays, the high-definition audio capabilities of smart-
phones are used to sense surroundings. For example, current
smartphones have equipped with a dual-microphone, which can
detect the relative position between users and potential obstacles.
Besides, some modern smartphones (e.g., iPhone 7, 8, 10, 11,
Samsung Galaxy S8+, etc.) have a frequency response of up
to 23 kHz. This high-frequency response is inaudible to hu-
mans and distinguishable in normal environmental noises. All
major operating systems of smartphones support playback and
recording at 192 kHz sampling frequency. Researchers have
able to detect the obstacle in sub-centimeter level accuracy in
this frequency. The key idea of this technique is to create an
acoustic sonar from the built-in smartphone speaker. The signal
has an inaudible frequency and disseminates spherically in every
direction. The top and bottom microphones record the reflected
signal, and the system identifies the obstacle based on these
captured signals. The system calculates the distance between
pedestrians and obstacles by the Round Trip Time (RTT) of

received signals. Figure 4 illustrates a simple acoustic-based
system to detect obstacles.

Size of obstacle

Obstacle

Walking Directjon
irecto

Figure 4: A generic obstacle detection systems using acoustic sensors. Source
[37]

ObstacleWatch developed by Wang et al. [37], a collision
detection system based on smartphone acoustic sensors. The
smartphone generates beep sounds and receives them after re-
flection from the obstacles. ObstacleWatch first filters out the
received signals, which are reflected from the user’s body and
ground. Then it locates the closest obstacle based on RTT of
the corresponding reflected signals and estimates the collision
based on the direction and angle. This system has multiple
modules, including an obstacle detection module, size estima-
tion module, etc. UltraSee [107] is an ultrasonic sensor-based
system attached to the user’s smartphone and can identify the
difference of ground surfaces. UltraSee identifies changes when
pedestrians step off the sidewalk. Aufo++ developed by Li et al.
[98] is another acoustic-based system. It detects sounds of cars
from different directions and warns pedestrians if any cars are
approaching. The system uses machine learning techniques to
extract features from environmental sounds and calculates the
number of cars and their direction. However, this system only
works for moving vehicles that actively emit acoustic noises.



BBeep [110] is another sonic collision avoidance system for the
visually impaired and pedestrians. It is equipped with a suitcase
that emits sounds. BBeep detects obstacles based on the captured
signals in the crowded areas and warns pedestrians about the
visually impaired.

5.3.1. Drawbacks of Acoustic

The holding behavior and orientation of receivers (i.e., smart-
phones, sensors) are important in acoustics-based systems. For
example, users typically hold their phones vertically, but they
may have their phones horizontally (i.e., during play games or
watching full-screen videos). Therefore, detection angles would
be different if the orientation and position changed. Multiple
sources of acoustics reduce the detection accuracy. For example,
if more than one device transmits the beep signal, the receiver
would be confused about the origins. Assigning different fre-
quencies of origin could mitigate this problem if the sample size
is small (i.e., FDMA - Frequency Division Multiple Access),
where sources would transmit signals in different frequency
bands. However, this solution would not be feasible in urban and
crowded areas where more than a hundred pedestrians cross an
intersection at a time. Besides, acoustic-based systems cannot
provide the types and nature of the obstacles.

5.4. AR/VR Based

Augmented Reality (AR) is a technology where digital infor-
mation, sensory data, visual effect, sounds, etc., adds a layer
to the real-world environment. For example, the mobile game
app Pokemon Go’, or the virtual furnishings app IKEA Place®.
In contrast, Virtual Reality (VR) creates a computer-generated
artificial environment by replacing the real world. Portable de-
vices (e.g., smart glasses, smartphones, etc.) support the AR
applications; only an extra headset is needed sometimes. The
pedestrian can experience these applications while walking and
running. VR allows us to display information about paths and
traffic directly into the field of vision. Though the procedure and
technology are different in the devices, AR uses computer vision,
Simultaneous Localization and Mapping (SLAM), and depth
tracking to show the relevant contents to users. AR applications
render virtual images over real-world objects with various sen-
sors (e.g., GPS, digital compass, velocity meter, accelerometer)
and calculate the distance to the objects. It uses device cameras
to collect, process, and show the pedestrian’s potential obstacles
in the direct sight of view. Kang et al. proposed SafeAR [119], an
obstacle alert system for the pedestrians using AR applications
while walking. The system extracts 3D feature points which are
visually exclusive and the 6DOF (Six Degrees of Freedom or 6D
position) camera pose from the input image. Then SafeAR cal-
culates the distance between each feature point and the ground
(reference plane). If the distance is greater than a certain value,
the feature points (object) are identified as obstacles. Hesenius
et al. [101] designed a navigation system with augmented reality
to guide pedestrians in autonomous traffic. The applications

7Pokemon Go - https:/pokemongolive.com/en/
8IKEA Place - https://apps.apple.com/au/app/ikea-place/id 1279244498

provide multiple features to pedestrians, including the exact nav-
igational path, safe zone to cross the street, and information of
incoming vehicles. It augments the navigational direction over
the natural world with the input imagery, traffic data, vehicle
information, and pedestrian position. Tong et al. [33] proposed
an effective warning interface prototype of AR applications for
pedestrians. It discusses what information should be displayed
in a warning system, how effectively presented to the user, and
when it needs to warn the pedestrians. Sobhani et al. [116]
use a head-mounted virtual reality device to evaluate distracted
pedestrians. The system warns the pedestrian by flashing LED
lights when they initiate crossing. The system used VR tools to
simulate better traffic conditions closer to reality for participants.
Gruenefeld et al. [14] developed a prototype of peripheral vision-
based glasses to protect pedestrians in critical traffic encounters.
The system protects pedestrians at the intersection, where a car
is approaching from the pedestrian’s left or right side.

5.4.1. Drawbacks of AR/VR

In AR/VR-based systems, efficiency mostly depends on fea-
ture extraction accuracy. Because it applies other components
(e.g., safety tips, object information, advice, etc.) based on ob-
stacle types after extraction. However, textureless objects cannot
provide high accuracy during extraction from the inputs. Also,
a sudden change of illumination, angle, and distance leads to
an error to detect an obstacle and impedes the visual process.
Besides, pedestrians need to wear AR-supported devices (e.g.,
AR glasses, headsets, etc.) while crossing the intersection and
walking.

5.5. GPS Based

Most GPS-based collision detection systems are designed for
the driver. However, with the improvement of GPS technology
in wearable devices, researchers have developed safety systems
for pedestrians. Generally, the pedestrians and objects (e.g.,
vehicles, obstacles, etc.) share their GPS positions. After that,
the distance and relative velocity calculate, then identifies the
collision possibility. There is an advantage of this technique;
the detection could be a non-line-of-sight approach; the obsta-
cle does not need to be within the eyesight of the pedestrian.
Lin et al. [38] proposed pSafety, which adopts the intrinsic
GPS receiver of smartphones and instantly alerts a pedestrian
to potential collision events. To reduce the error positioning in
smartphones, they designed the Sector Overlap Detection Algo-
rithm (SODA). Each user’s location should be a sector and be
detected if they overlap at a specific time. There is a threat rank-
ing method in pSafety to measure the degree of risk to reduce
warning fatigue in each overlapping event.

5.5.1. Drawbacks of GPS Based Applications

The smartphones’ GPS receiver is an intuitive solution, usu-
ally not sophisticated and with low computational power. The
received signal is inaccurate and not updated in real-time in ur-
ban areas [123, 124]. The accuracy of GPS depends on sufficient
signal quality received. In addition, GPS signal is affected by the
atmosphere (i.e., multipath) electromagnetic interference, iono-
sphere, etc. The signal accuracy in the low-powered device is



about 5 to 10 meters (e.g., in the iPhone 6, the position accuracy
is 7-13 m [123]). However, different receivers have different
levels of accuracy. In addition, the GPS denial environment and
the crowded urban area do not provide the actual position. The
GPS chip is hungry for power, which drains the smartphone
battery. It requires replacement or recharge of the battery quite
frequently.

5.6. Infrared Based

Infrared (IR) sensors are used to detect objects by Infrared
Radiation or emitting heat. It is also used to detect an object’s
motions and surroundings. IR is invisible to humans as the
wavelength is longer than the visible light. There are mainly
two types of Infrared sensors: Active Infrared (AIR) - which
can emit infrared radiation and later receive it by the receiver.
In contrast, the Passive Infrared (PIR) can only detect infrared
radiation and does not emit it. The AIR is commonly used for
obstacle detection as proximity sensors. The IR sensor broadcast
signals to determine the distance between pedestrians’ device
and the ground. If an obstacle reflects this signal, the system
identifies it as a potential hazard on the pavement. Although it
is a simple idea, the implementation and experiments in real-
life raise challenges. Identifying any changes in the ground
surface is not accessible due to surrounding noises, especially
in the urban areas. InfraSee [97] developed by Liu et al. which
detect a sudden change in the ground using an infrared sensor
that is augmented with the smartphone. To remove the human
walking-induced noise, InfraSee uses smartphone embedded
sensors. After receiving the infrared sensor data, the system
fixed the orientation using data calibration. It applies forward-
backward zero-phase filtering to reduce the noise. Statistical
analysis is applied to the filter data to identify the hazard with
the pre-processed infrared data. Unlike the smartphone camera
and positional sensors, the infrared signal and sensors consume
less energy. However, a continuous stream of an infrared signal
can drain the battery.

5.6.1. Drawbacks of Infrared

The IR signal frequencies are sensitive to environmental fac-
tors and can be affected by sunlight, smoke, dust, etc. Hence
the detection accuracy would vary under different conditions.
In addition, it requires the line of sight between the transmit-
ter and receiver to detect any obstacle. As pedestrians have
to use infrared sensors (augment an extra device) with their
smartphones, the usability could reduce. In addition, the detec-
tion performance decrease on the urban roadside due to heavy
infrastructure and induced noise.

5.7. Wearable Based

Nowadays, wearable devices are ubiquitous, which users wear
or attach to body parts most of the time. Sensors in wearable
devices can continuously receive various users related data in
real-time. For example - Smart Watches (e.g., Apple Watch?,

° Apple Watch - https://www.apple.com/watch/
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Samsung Watch!?), Fitness Tracker (e.g., Fitbit'!, Garmin'?),
Head Mounted Display (e.g., Oculus'?), etc. Researchers have
used several wearable sensors to detect obstacles for pedestri-
ans such as ultrasonic sensors, smart clothing, smart shoes, etc.
Collision detection depends on the sensor used in identifying
obstacles and algorithms. PAWS developed by Xia et al., a
pedestrian safety system that uses multichannel audio sensors
and able to detect approaching vehicles [117]. PAWS can iden-
tify the collision to pedestrians from car’s honks, engine, tire
noises with the help of machine learning. The system combines
five microphones, signal processing, and feature extraction elec-
tronics; the smartphone does the machine learning part. The
four microphones are distributed over the user at the left-right
ear, back of the head, and chest. They combinedly provide the
sources of the incoming sounds. The signal processing hardware
synchronously acquires analog signals from these microphones
and locally extracts acoustic features used by a smartphone ap-
plication. There are two-phase of development: PAWS - basic
segmented architecture and PAWS low-energy - to reduce en-
ergy consumption through internal design. The system shows a
promising result in three different real-world setups (e.g., resi-
dential neighborhood, side of a highway, and metropolitan area).
However, there are some limitations to detect incoming cars
with this technique. For example, the system would confuse
about multiple approaching cars. Besides, the noisy urban roads
would provide the same type of sounds in numerous directions,
making the system ineffective. Patankar et al. [109] developed
a human assistance system to detect obstacles using multiple
wearable ultrasonic sensors. At first, they implemented a system
with three sensors, but the system cannot detect obstacles from
other directions. The array of nine sensors successfully detects
obstacles from multiple sides of the pedestrian. The system is
divided into three parts, signal generation-reception, processing,
and output. In the output phase, the system generates a map of
obstacle position and surroundings. Although the system can
detect an object, it cannot provide any information of the object
type. In addition, it cannot detect multiple objects at the same
time.

5.7.1. Drawbacks of Wearable based applications

In obstacle detection, most of the wearable devices connected
with other computation sources (i.e., smartphones, servers, etc.)
cannot detect an obstacle individually. Unlike the smartphone, a
wearable is not versatile. The pedestrian needs to wear different
devices to collect diversified data (e.g., vision data, motion data,
Bluetooth signals, etc.). Wearables collect the raw sensor data; it
needs to be better calibrated to get high accuracy and flexibility.
Sensors need to be correctly positioned, and data needs to be
better analyzed. In addition, security and privacy are a concern
for wearable-based applications due to data transfer and always-
on features. We discuss details about privacy issues in Section 7.

10Samsung Watch - https://www.samsung.com/us/mobile/wearables/all-wear
ables/

U Fitbit - https://www.fitbit.com/us/home

12Garmin - https://www.rei.com/s/garmin-fenix-5-watches

130culus - https://www.oculus.com/quest/



5.8. Crowdsensing Based

Mobile Crowd Sensing (MCS) or Wearable Crowd Sensing
(WCS) or simply, Crowd Sensing is a technique to collectively
gather, compute, and analyze data. Usually, a large group of
individuals carry sensing devices that collect data and share it
with others to achieve common interests. Single devices can
gather information from one direction and within the scope in
other obstacle detection systems. In contrast, with crowdsens-
ing, the system can get data from multiple sources. Therefore,
crowdsensing provides a more detailed description of the sur-
rounding area of pedestrians than individual smartphone sensor
data. CrowdWatch is a crowdsensing application developed by
Wang et al. [112], which leverages mobile crowdsensing and
crowd intelligence aggregation to detect temporary obstacles.
If there is any obstacle on the pavement, the non-distracted
pedestrian would detour to avoid them. The built-in sensors
(e.g., accelerometer, orientation sensors, etc.) of this pedestrians’
smartphone adopt this turn and record it. When multiple users
take this turn, the system assumes there may be an obstacle
on the sidewalk. Then the system reminds distracted walkers
about the dangers in front of them. However, every time making
turns does not mean an obstacle. To avoid this, CrowdWatch
adopted the Dempster-Shafer evidence theory [125] to calculate
the confidence of obstacle existence. Wang et al. [118] devel-
oped CrackSense to detect urban road cracks based on mobile
crowdsourcing. After aggregating the multi-sourced data, it rec-
ognizes the crack type into the horizontal crack, vertical crack,
and net crack by an algorithm named Road Crack Type Recog-
nition (RCTR). CrackSence also estimates the crack damage
degree.

5.8.1. Drawbacks of Crowd Sensing

In crowdsourcing, individual users collect surrounding data;
the behavioral reaction to an obstacle is different from person
to person. The users can react or sense data for many reasons
other than obstacles. The data may not be credible, and the
process of validation is laborious. To determine an obstacle from
crowdsensing data is not trivial. As nature and characteristics are
complicated on the sidewalk, it is difficult to identify an object
as an obstacle. This technique would only provide an accurate
warning for the static obstacle. In addition, distinguishing the
individual obstacles and characterizing any dangerous area is
challenging, especially in a rapidly changing environment. It
is not sufficient to only localize or mark a place as dangerous.
Characterizing an obstacle in a granular manner is needed to
ensure pedestrian safety.

5.9. Hybrid Applications

A specific sensor is often insufficient to detect potential danger
successfully. Significantly, in an urban area where the environ-
ment and surroundings are ever-changing. Therefore, several
safety systems use a set of input sensors to achieve higher ac-
curacy. For example, Tung et al. [42] developed BumpAlert
using the acoustic sensor, inertial sensor, and phone camera.
BumpAlert consists of four components, including distance esti-
mation, which uses the acoustic detector; obstacle presence de-
termination uses the visual sensor; pedestrian walking speed uses
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the motion estimator; generates alerts from all the above com-
ponents using the fusion algorithm. The application provides
more than 95% accuracy for the static objects in a controlled
lab environment; however, the system cannot detect moving
obstacles. BumpAlert provides the distance information of the
obstacle, but only the distance is not enough to properly esti-
mates a potential collision. In addition, the false alert annoys
users and reduces usability. Li et al. [32] proposed Safe Walking,
an Android-based safety system for pedestrians. Safe Walking
uses the smartphone inertial sensor and smartphone built-in front
camera to detect walking behavior. One interesting thing is that
the system identified the distracted pedestrian behavior instead
of detecting an obstacle. Specifically, Safe Walking detects the
pedestrian speed using inertial sensors to identify if the user is
walking or not. Then, it measures the face and eye movement by
an image detection algorithm. Finally, the system identifies the
distraction level and gives alerts to pay attention. Safe Walking
introduced eye-movement tracking, a new layer to avoid the ob-
stacle for a pedestrian when unattended on the street. However,
the system would always warn the pedestrian even if there are
no potential threats around them. Uchida et al. [115] proposed
an accident prevention system using smartphones by the chrono-
logical changes of sensors and radio signals. The smartphone
continuously monitors the user’s (driver, bicycle, and pedestrian)
motions by various sensors. If the system detects any abnormal
behavior of the driver and bicycle, then the smartphone gives an
alert to the pedestrian. However, all types of users (drivers, bicy-
clists, and pedestrians) must use smartphones in this proposed
system. Ishikawa et al. [40] designed a road anomaly (e.g.,
cracks, pits, puddles, etc.) detection system based on pedestrian
walking patterns and behaviors. The system uses inertial sen-
sors, GPS, and Geographical Information System (GIS) to detect
an anomaly. The GIS is used to eliminate the false classified
event (e.g., a real curve on the road). The detection accuracy
depends on the user’s smartphone data. However, people carry
their smartphones in various positions, such as trousers pocket,
chest pocket, hand, etc. It creates noise and overhead, which
negatively impact accuracy. SightSafety developed by Riaz et al.
[100], a hybrid health management system to prevent collision
between pedestrians and vehicles in the sites. SightSafety uses
GPS, inertial sensor data, and wireless networks to track and
notify the users. The system creates multiple zones (e.g., green
zone, amber zone, and red zone) based on the positions and
types of vehicles. Then SightSafety delivers alert signals de-
pending on the context of the user (e.g., pedestrian, site worker,
manager, etc.), and task (e.g., plant operator, ordinary worker,
etc.). Won et al. [39] developed SaferCross using smartphone
inertial sensors, GPS, and Direct WiFi. SaferCross is useful for
localizing pedestrians in urban areas with skyscrapers where
accurate positioning based on GPS is challenging.

5.9.1. Drawbacks of Hybrid

We found the hybrid system is most promising in terms of
accuracy and usability. However, the unnecessary use of mul-
tiple services and sensors is expensive in terms of energy con-
sumption. For example, in BumpAlert [42], the visual detection
module causes twice the CPU usages than acoustic detection.



The computation resource is also affected if the resources are
not correctly used.

6. Advantages and Limitations of Existing Systems

Every safety systems have some drawbacks and benefits.
Some of the proposed techniques performed better in a con-
trolled lab environment but are not usable in real life. For that,
we have identified the advantages and limitations of current ob-
stacle detection systems. It would help to identify the usability
of these systems and potential research direction. Table 3 shows
the advantages and limitations of the systems group-wise. Here,
the “ID” column represents the individual paper reference listed
in Table 2.

7. Privacy

Pedestrian safety systems adopted various holistic approaches
and technologies. As a result, these technologies have raised
unforeseen security and privacy concerns. Usually, previous
research on pedestrian safety rarely considered user privacy and
security risk. There was a tendency to overlook these issues
of the proposed systems to make them fully mature and then
retroactively try to develop safeguards. However, we argue
that we should develop the security and privacy protocol from
the sketch when the technologies are still young and malleable.
This section discusses potential privacy issues and mitigation
in pedestrian safety systems. Therefore, we divided the privacy
issues of the pedestrian system into the following categories
based on the nature of existing applications and systems.

7.1. Privacy of Sensor Data

Safety systems require access to various sensor data, includ-
ing audio-video, motion, GPS, infrared data, etc., to provide
intended accuracy to the pedestrians. Though the privacy of
sensor data are well handled in some other area, it has become
more sensitive for pedestrian safety as their nature of always-on,
always-sensing (i.e., camera, GPS, microphone). Besides, some
device needs to communicate with other devices by wireless
technology. Thus, the device needs to provide some access to
sensor data to others. However, maintaining a balance between
personal data from stealing or misusing and giving access to
functionality is challenging. For instance, a malicious safety
system can steal or leak the pedestrian location data to third
parties [126]. There should be a safeguard to limit access to
these data. A system should not require sensor data all the
time; perhaps it could access sensors for a specific period or
at a particular location [127]. In addition, the system has to
implement user-driven access control [128] and adopt a two-way
user-centric approach — first, safety systems have to get permis-
sion from pedestrians before collecting any data. Second, only
unidentifiable and consented data can be stored. The system has
to take proper safety measures to protect these data, including
obfuscation [129], strong encryption, anonymity method [130],
etc.
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7.2. Bystander Privacy

The always-on sensing of obstacles detection systems creates
privacy concerns for bystanders [131]. Though the issue of by-
stander’s privacy is not new, the overwhelming use of cameras,
acoustics, GPS, and motion sensors has risen in importance. For
example, one of the main reasons that failed Google Glass was
it made bystanders uncomfortable about their privacy 4. The
questions arise when a pedestrian device collects data to identify
the surrounding pedestrian when they have not given consent to
be part of the collection. Bystanders usually respond when they
are being recorded. For example, Hoyle et al. conducted a study
on bystander’s privacy with lifelogging cameras where people
avoided interaction with those who wore a camera. In addition,
people prefer to manage privacy during recording instead of
reviewing after collection [132]. Denning et al. explored the by-
stander’s reactions toward the augmented reality devices [133].
The camera, acoustics, and augmented reality-based obstacle
detection systems should adopt the proper safety measures to
protect the surrounding user’s identity. For example, the device
can alert bystanders when sensing or recording, user-centric sen-
sor designs [134], synthesizing makeup to prevent identification,
etc. [135, 136]. However, current technology has shown little
success in protecting the bystanders’ privacy [137, 138]. In ad-
dition, the advancement of deep learning and image processing
can recreate the obfuscated and blurred image of pedestrians
[131, 139].

7.3. Cross-app Privacy

The multiple pedestrians in the same obstacle detection sys-
tem can exchange the data with each other. For example, in a
crowd-sensing system or augmented reality-based system, or any
system where the central predefined model helps to detect the
obstacles. Recently, cross-app privacy has emerged when Apple
Inc. gives users the option to control tracking settings'>. There-
fore, new approaches have to be adopted with the traditional
access control. For example, in the AR systems, gesture-based
drag and drop sharing has been introduced [140]. Sliwa pro-
posed a data exchange framework where privacy is preserved and
takes only required data which unaware of the semantics [141].
In addition, the wearable and AR-based applications would need
to evolve new user gestures to indicate sharing intent.

7.4. Cross-system Privacy

The communication of the cross-system applications can lead
the data leakage (i.e., communication between pedestrians and
vehicles (V2P or P2V)). In these systems, both vehicles and
pedestrians share their position, velocity, and intended destina-
tion with other systems (sometimes with different protocols)
[142]. Malicious applications can steal users’ locations, hot
spots, and habits [143]. However, without sharing these data,
safety would not be achieved. So there should be a trade-off
between privacy and safety [144, 145]. All contemporary safety

Mhttps://www.theguardian.com/commentisfree/2017/jul/23/the-return-of-
google-glass-surprising-merit-in-failure-enterprise-edition
Bhttps://support.apple.com/en-us/HT212025



Table 3: Advantages and limitations of the existing applications

Tech. ID Advantages Limitations
g « Ubiquitous to all modern smartphones * To process raw data, the system needs high computational
@ A2, L. o . OwWer.
5 « It can measure acceleration, tilt, shock, vibration, rotation, P . .
] Al0, and multiple degrees-of-freedom (DoF) motion * High frequency and continuous sensor data are needed for
= A27, ple degrees .. .. : . better accuracy.
= * Proficient in detecting activity recognition, fall detection, . . .
5 A34 . . * Gives noisy data, needs a personalized model to detect. In-
2 speed calculation, sudden change of pedestrian state, etc. . . . .
= sufficient for pedestrian safety in dense urban environments.
A4,
A7, * The camera-based system detects an obstacle ahead of . . . .
« Al2 time « Image recognition is a computationally-intensive process.
g ’ ) . o . . * The obstacle must be in the direct line-of-sight to detect.
£ Al17, | « Camera can identify distracted pedestrians by eye-tracking. . . o
< . . . . * Detection accuracy depends on the environment, lighting
&) A23, | < It is possible to recognize the shape, size, texture, and .. .
A5 materials of obstacles conditions, and camera quality.
A36
* Acoustic system provides unsupervised classification * Difficult to identify from multiple sound sources, noisy
R co ) h environment, and sound absorber obstacles.
2 Al, where no preliminary data are needed. * Get confused by the legit barriers, such as body reflection
2 A6, ¢ Inaudible to humans, it can continuously monitor users y £ ’ y ’
2 . . crowded areas, etc.
S Al6, | without annoying them. L
< . . ) . . « The obstacle angle estimation depends on how the pedes-
A20 Relatively low power consumption than other smartphones . . . N
sensor (e.g., Camera, GPS, etc.) trians hold their devices, which is different from person to
& ’ B person.
* Able to detect obstacles from both line-of-sight and non- . .
» i f-sioht & * Larger distance error due to the GPS signal accuracy.
A {ne-ol-sig . .. . * No other information about the obstacle but points.
© Al3 * A pedestrian can share the position with others. * Would not functional in GPS denied environment and
* The GPS signal is available worldwide. Therefore the crowded urban areas
GPS-based system will work in most places. )
« Used to detect sudden changes of ground and object pres- * It requires the obstacles within the line-of-sight of the
= . pedestrian.
S ence/motions. K . e . .
= . . . * The receiver will be confused if it receives the same multi-
s A3 * Invisible, Infrared based system works at night as well. le sionals i
= * Relatively low power consumption than smartphones GPS ple signals from different sources.
- Camera > |  The signal can be blocked by other pedestrians, walls, trees,
’ and sunlight.
* It is specially built for obstacle detection by multiple sen- . . . .
sors anfi devic};:s Y P * Low computational power, high latency in data communi-
© . .
= . . . cation.
= A18, | * Wearable based systems can monitor the pedestrian contin- . . L .
- A30 wously even if their phone is not in use * The multipart system is ineffective if any part is not prop-
kY nd phone 1 I erly worn.
= * Vision-based wearable give an extra insight into obstacles . Y .
{0 the pedesrian ¢ The sensors, camera, acoustics-based limitations also exist.
2 * It can provide a detailed description of the obstacles from | * Crowdsensing cannot work in real-time detection and is
g AlS different sources. unsuitable for moving obstacle detection.
3 A2 4’ * The obstacle does not need to be in the eyesight, even not | * The pedestrian has to be non-distracted while sending data
'-g A3 1’ within the sensor range. to others.
e * Automatic obstacle detection with the manually labeled | * Personalized pedestrian data can be imperfect; validation
&) crowdsensing data gives better accuracy. is time-consuming and difficult.
AS,
» A9, * AR/VR-based system provides extensive information about | ¢ Overlaying digital elements on the natural environment
E All, | the obstacle. masks real-world danger and make pedestrian less cautious.
> A21, | * AR-based systems operate simultaneously with real-world | e Full fledged AR application with details of the obstacle is
A26, | occurrences; the obstacle can detect in real-time. costly and technologically taxing.
A29, | e« The application offers an arrow-pointed redirection path or | * Sometimes, the application itself is a distraction as pedestri-
A32, | asafe passing zone to avoid obstacles. ans fall in danger as their attention is focused on the contents.
A35
A8, . . .
=l * A combination of multiple approaches is necessary because L . .
= Al4, | .. . e . * Multiple input source causes high energy consumption and
= it is challenging to detect obstacles by utilizing only the built- .
> Al9, . . . computational resources.
== in sensors in commodity phones. e .
A22, . . . . . | *Maintaining the correlation between resources and sensors
* Possible to collect information about the surrounding envi- | . .
A28, . is challenging.
A33 ronment/obstacles from multiple aspects.
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measures must be adopted throughout the components and con-
sistent to make a secure and safe system. On the user side,
pedestrians must review uses logs to verify the access.

8. Challenges and Future Directions

8.1. Real Time Detection

The human visual system extracts information from moving
objects in real-time. It can auto-focus on multiple things in
its surroundings without any biological changes. However, de-
tecting obstacles using the camera is considered challenging
because of the absence of the optical flow or the motion paral-
lax. It is vital to keep track of other objects (e.g., non-hazard
obstacles, possible flying objects, etc.). Though the recent ad-
vancement in camera technology, it is still challenging to trace
and track multiple objects simultaneously in low-level devices.
Because tasks considered easy by humans are certainly tricky
in computer vision, we humans can easily recognize a person
regardless of the orientation or vehicles in various positions or
multiple vehicles are together seen from any angle. However,
object detection techniques face common challenges, including
viewpoint variation, occlusion, illumination conditions, etc. For
example, occlusion happens when two or more objects approach
too close together and seem to mix or join, a common scenario
at the street. The other important factor is speed, which means
that object detection algorithms must accurately classify impor-
tant objects and be incredibly fast during prediction to identify
objects in motion. The computer vision and mapping technol-
ogy, such as simultaneous detection and tracking [146], the deep
learning [147] approaches could overcome this challenge.

8.2. Lack of Information

Detailed object information (e.g., size, position, materials,
speed, etc.) is needed to detect the potential collision. Safety
systems can detect the presence, characterize objects, and mea-
sure the distance of the obstacles from the pedestrian. The
system gets this information by coarse-grained data without cor-
relation of materials, nature, and the intention of the obstacles.
Such data is insufficient to detect a potential collision accurately.
For example, objects angle information, surrounding environ-
ments, obstacle types, etc. Safety systems can use Geographical
Information Systems (GIS) to get surroundings data beforehand.
For example, there is a possibility of the presence of VRU’s
in schools and recreation areas. If any safety system has those
data, it can make the decision and warn the pedestrians/drivers
beforehand.

8.3. Hardware Limitation

Smartphones and wearables have equipped with sensors for
limited computation power and functionalities. However, these
sensors are well enough for the users’ daily activity but do not
provide high accuracy to detect obstacles. For example, the com-
modity smartphone is primarily designed for everyday use and
is not equipped with dedicated sensors. It has a limited number
of microphones and speakers. In contrast, the radar and sonar
systems are specifically designed and equipped with dedicated
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multiple transmitters and receivers. To ensure pedestrian safety
in an urban area, sometimes it needs granular level accuracy in a
matter of seconds [148]. Current smartphones and low-powered
wearables are not capable of handling large data. Smartphone
GPS is another example of hardware limitation. If we want high
positional accuracy, the phone battery will drain significantly.

8.4. Human Factor

In collision detection systems, human factors are impor-
tant due to inconsistency. Pedestrian body pose, inter-
pedestrian/social-related behavior, and consciousness affect
safety. These factors are different from human to human. Some
studies explore the use of pedestrians’ contour [149], posture,
and body language [150]. However, estimating pedestrians’
movement is even more challenging due to uncertainties regard-
ing their impending motion. Researchers can adapt trajectory
prediction [151] or activity recognition [152] in safety systems.

8.5. Dynamic Environment

The dynamic surrounding is challenging for pedestrian safety
in the real world, especially in the urban area. The street in a city,
the movement of vehicles, and the crowded pedestrian are differ-
ent problems for the safety systems every time. Most research
detects the static obstacle from this changing environment but
not the moving one. However, recent development in SLAM
(i.e., Dynamic SLAM) and Robotics technology shows success
in overcoming this problem [153, 154].

8.6. Noisy Sensor Data

Noisy sensor data and environmental disturbance are impor-
tant concerns in obstacle detection. Raw data contains noises
caused by unpredictable hand or body jitters, affecting accu-
racy. For example, built-in smartphone sensors need calibration,
filtering, and face difficulties in identifying different motions.
Acoustics and inertial sensor-based solutions also get impacted
severely by the noise. The presence of noise in data may increase
the processing complexity and time, which affect performance.
The detection system should differentiate the sounds from multi-
ple sources. For example, environmental noises (e.g., walking in-
duced noise, non-hazard sounds, human sound, etc.) and desired
input signals need to classify correctly. Researchers proposed
some filters and techniques to handle these noises [155, 156]. In
the deep learning technique, noise can be in multiple levels, such
as class level noise, feature level noise, etc. Previous research
found that noise can easily overfit the model, which leads to
poor generalization performance [157]. Some research suggests
relabeling the noisy data; however, this technique only benefits
the data for the static environment [158, 159]. Several studies
have recently presented noise-resistant object detection [160].
However, accuracy is still low.

8.7. Sidewalk Data

Pedestrian safety and obstacle detection depend on sidewalk
accessibility data. The quality of data helps to improve the ac-
curacy. Usually, the presence and quality of the sidewalk in a



city audits by the transportation department via in-person inspec-
tions. However, this process is laborious and expensive; most
importantly, not frequent. Therefore, safety systems cannot use
these data to identify potential dangers in real-time. For instance,
while map service provider companies offer pedestrians-focused
features, they do not provide sidewalk accessibility information
[161]. Recent research has included a small set of sidewalks
data to detect obstacles [162, 163].

8.8. Complete Ecosystem

All the existing applications contributed to certain aspects
of pedestrian safety or obstacle detection. Such a system can-
not protect the user from other potential dangers. For example,
Auto++ cannot detect static obstacles, BumpAlert cannot iden-
tify moving obstacles, etc. To this end, we need a complete
ecosystem where all the elements can interact. Such a system
can be built with multiple modules (e.g., an application for pedes-
trians and drivers, a communication module, an object tracker
module, etc.).

9. Conclusion

Pedestrians are the most vulnerable road users, and therefore,
they require maximum protection. Recently, numerous research
has been conducted in the context of Pedestrian Protection Sys-
tems. For example, obstacle detection, collision prediction, alert
systems, etc. The fusion of multiple sensors and augmented
reality-based obstacle detection systems has shown promising
results. However, most of the current research on pedestrian
safety is coordinated toward a specific domain, and those sys-
tems are usually not competent for the real-world scenario. It
is necessary to carry out systematic experimental validation to
ensure robust and reliable performance in all kinds of environ-
mental conditions. In addition, the privacy and security of this
type of safety system should be guided from the early stage of
development. A systematic performance matrix could be de-
veloped to compare the performance of multiple research and
applications. Some standardized datasets will help achieve this
goal. A personalized agent or Guardian Angel application could
save lives from unsought accidents in the future. These systems
would be able to predict the potential dangers and warn the
pedestrians successfully.
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